Siberian Mathematical Journal

, Volume 28, Issue 5, pp 772–779 | Cite as

Algorithmic complexity of the problem of occurrence in commutants and members of the lower central series

  • I. V. Latkin


Algorithmic Complexity Central Series Lower Central Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Yu. L. Ershov, Solvability Problems and Constructive Models [in Russian], Nauka, Moscow (1980).Google Scholar
  2. 2.
    H. Rogers, Jr., Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York (1967).Google Scholar
  3. 3.
    M. I. Kargapolov and Y. I. Merzlyakov, Fundamentals of Group Theory [in Russian], Nauka, Moscow (1982).Google Scholar
  4. 4.
    R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer-Verlag Berlin-New York (1977).Google Scholar
  5. 5.
    P. Hall, The Edmonton Notes on Nilpotent Groups, Queen Mary College Mathematics Notes, Mathematics Department, Queen, Mary College, London (1969).Google Scholar
  6. 6.
    A. I. Mal'tsev, “On homomorphisms on finite groups,” Uch. Zap. Ivanov. Gos. Pedagog. Inst.,18, No. 5, 49–60 (1958).Google Scholar
  7. 7.
    O. G. Kharlampovich, “A finitely defined solvable group with unsolvable equality problem,” Izv. Akad. Nauk SSSR,45, No. 4, 852–873 (1981).Google Scholar
  8. 8.
    M. Hall, The Theory of Groups, Macmillan, New York, (1959).Google Scholar
  9. 9.
    W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory, Interscience, New York (1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • I. V. Latkin

There are no affiliations available

Personalised recommendations