Siberian Mathematical Journal

, Volume 28, Issue 5, pp 762–767 | Cite as

An interpolating family of a univalent analytic function

  • S. L. Krushkal'


Analytic Function Univalent Analytic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    D. M. Campbell, J. G. Clunie, and W. K. Hayman, “Research problems in complex analysis,” in: Aspects of Contemporary Complex Analysis, D. A. Brannan and J. G. Clunie (eds.), Academic Press, London-New York (1980), pp. 527–571.Google Scholar
  2. 2.
    F. P. Gardiner, “Approximation of infinite-dimensional Teichmüller spaces,” Trans. Am. Math. Soc.,282, No. 1, 367–383 (1984).Google Scholar
  3. 3.
    D. B. A. Epstein, “Curves on 2-manifolds and isotopies,” Acta Math.,115, Nos. 1–2, 83–107 (1966).Google Scholar
  4. 4.
    H. L. Royden, “Automorphisms and isometries of Teichmüller spaces,” in: Advances in the Theory of Riemann Surfaces, L. V. Ahlfors, R. C. Gunning, etc. (eds.), Princeton Univ., Press (1971), pp. 369–383.Google Scholar
  5. 5.
    S. L. Krushkal' Quasiconformal Mappings and Riemann Surfaces [in Russian], Nauka, Novosibirsk (1975).Google Scholar
  6. 6.
    S. L. Krushkal', and R. Kyunau, Quasiconformal Mappings—New Methods and Applications [in Russian], Nauka, Novosibirsk (1984).Google Scholar
  7. 7.
    J. Becker, “Löwnersche Differentialgleichung und quasikonform fortsetzbare schichte Funktionen,” J. Reine Angew. Math.,255, 23–43 (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • S. L. Krushkal'

There are no affiliations available

Personalised recommendations