Siberian Mathematical Journal

, Volume 26, Issue 1, pp 22–27 | Cite as

Subspaces generated in the spaces Lp (Z<p<∞) by random processes

  • M. Sh. Braverman


Random Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. Q. Rodin and E. M. Semyonov, “Rademacher series in symmetric spaces,” Anal. Math.,1, No. 3, 207–222 (1975).Google Scholar
  2. 2.
    Y. Lindenstrauss and L. Tzafriri, Glassical Banach Spaces II, Springer-Verlag, New York-Heidelberg-Berlin (1979).Google Scholar
  3. 3.
    M. Sh. Braverman, “On the complementability of subspaces generated by independent functions in a symmetric space,” Funkts. Anal. Prilozhen.,16, No. 2, 66–67 (1982).Google Scholar
  4. 4.
    W. P. Johnson, B. Maurey, G. Schechtman, and L. Tzafriri, Symmetric Structures in Banach Spaces, Mem. Am. Math. Soc., No. 217, Am. Math. Soc., Providence (1979).Google Scholar
  5. 5.
    M. Loeve, Probability Theory, Van Nostrand, Princeton (1955).Google Scholar
  6. 6.
    I. N. Gikhman and A. V. Skorokhod, Introduction to the Theory of Random Processes [in Russian], Nauka, Moscow (1977).Google Scholar
  7. 7.
    I. M. Gel'fand “A remark on the article: N. K. Beri 'Biorthogonal systems and bases in a Hilbert space,” Uch. Zap. Mosk. Gos. Univ., Ser. Math.,4, No. 148, 224–225 (1951).Google Scholar
  8. 8.
    E. R. Lorch, “Bicontinuous linear transformations in certain vector spaces,” Bull. Am. Math. Soc.,45, No. 8, 564–569 (1939).Google Scholar
  9. 9.
    A. N. Shiryaev, Probability [in Russian], Nauka, Moscow (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • M. Sh. Braverman

There are no affiliations available

Personalised recommendations