Siberian Mathematical Journal

, Volume 26, Issue 2, pp 254–259 | Cite as

Banach-Kantorovich spaces

  • A. G. Kusraev


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    L. V. Kantorovich, “The method of successive approximation for functional equations,” Acta Math.,71, 63–97 (1939).Google Scholar
  2. 2.
    L. V. Kantorovich, B. Z. Vulikh, and A. G. Pinsker, Functional Analysis in Semiordered Spaces [in Russian], Gostekhizdat, Moscow-Leningrad (1950).Google Scholar
  3. 3.
    B. Z. Vulikh, Introduction to the Theory of Partially ordered Spaces, Gordan and Breach (1967).Google Scholar
  4. 4.
    G. P. Akilov and S. S. Kutateladze, Ordered Vector Spaces [in Russian], Nauka, Novosibirsk (1978).Google Scholar
  5. 5.
    N. Dinculeanu, Vector Measures, Deutscher Verl. der Wissenschaften, Berlin (1966).Google Scholar
  6. 6.
    A. V. Bukhvalov, “The space of vector-functions and tensor products,” Sib. Mat. Zh.,13, No. 6, 1229–1238 (1972).Google Scholar
  7. 7.
    A. V. Bukhvalov, “On the duality of functors generated by spaces of vector-functions,” Izv. Akad. Nauk SSSR, Ser. Mat.,39, No. 6, 1285–1309 (1975).Google Scholar
  8. 8.
    V. L. Levin, “Tensor products and functors in categories of Banach spaces, defined by KB-lineals,” Tr. Mosk. Mat. Ob-va,20, 43–82 (1969).Google Scholar
  9. 9.
    A. I. Veksler and V. A. Geiler, “On ordered and disjoint completeness of linear semiordered spaces,” Sib. Mat. Zh.,13, No. 4, 43–51 (1972).Google Scholar
  10. 10.
    Yu. I. Manin, The Provable and the Unprovable [in Russian], Sov. Radio, Moscow (1979).Google Scholar
  11. 11.
    T. Joch, Set Theory and the Forcing Method [Russian translation], Mir, Moscow (1973).Google Scholar
  12. 12.
    R. Solovay and S. Tennenbaum, “Iterated Cohen extensions and Souslin's problem,” Ann. Math.,94, No. 2, 201–245 (1973).Google Scholar
  13. 13.
    E. I. Gordon, “Real numbers in Boolean-valued models of set theory and K-spaces,” Dokl. Akad. Nauk SSSR,237, No. 4, 773–775 (1977).Google Scholar
  14. 14.
    E. I. Gordon, “K-spaces in Boolean-valued models of set theory,” Dokl. Akad. Nauk SSSR,258, No. 4, 777–780 (1981).Google Scholar
  15. 15.
    W. A. J. Luxemburg and A. R. Schep, “A Radon-Nikodim type theorem for positive operators and a dual,” Indag. Math.,81, No. 3, 357–375 (1978).Google Scholar
  16. 16.
    A. G. Kusraev, “Some applications of the theory of Boolean-valued models in functional analysis” (Preprint IM Sib. Otd. Akad. Nauk SSSR), Novosibirsk (1982).Google Scholar
  17. 17.
    A. G. Kusraev, “Boolean-valued analysis of the duality of extension of models,” Dokl. Akad. Nauk SSSR,267, No. 5, 1049–1052 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • A. G. Kusraev

There are no affiliations available

Personalised recommendations