Siberian Mathematical Journal

, Volume 26, Issue 2, pp 159–170 | Cite as

Generalized symmetric spaces

  • V. N. Berestovskii


Symmetric Space Generalize Symmetric Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. N. Berestovskii, “Homogeneous Busemann G-spaces,” Sib. Mat. Zh.,23, No. 2, 3–15 (1982).Google Scholar
  2. 2.
    V. N. Berestovskii, “On homogeneous Busemann G-spaces,” Dokl. Akad. Nauk SSSR,247, No. 3, 525–528 (1979).Google Scholar
  3. 3.
    H. Busemann and B. B. Phadke, “Two theorems on general symmetric spaces,” Pac. J. Math.,92, No. 1, 39–48 (1981).Google Scholar
  4. 4.
    S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York-London (1962).Google Scholar
  5. 5.
    J. Szenthe, “A metric characterization of symmetric spaces,” Acta Math. Acad. Sci. Hung.,20, 303–314 (1969).Google Scholar
  6. 6.
    H. Busemann, The Geometry of Geodesics, Academic Press, New York (1955).Google Scholar
  7. 7.
    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, 2 vols., Interscience, New York-London (1963, 1969).Google Scholar
  8. 8.
    E. Cartan, Lecons sur la Geometrie des Espaces de Riemann, 2nd ed., Gauthier-Villars, Paris (1946).Google Scholar
  9. 9.
    H. Busemann, Recent Synthetic Differential Geometry, Springer-Verlag, Berlin-Heidelberg-New York (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • V. N. Berestovskii

There are no affiliations available

Personalised recommendations