Advertisement

Siberian Mathematical Journal

, Volume 21, Issue 6, pp 874–882 | Cite as

Properties of approximate solutions of nonlinear equations of variable type

  • M. M. Lavrent'ev-MI
Article
  • 22 Downloads

Keywords

Approximate Solution Nonlinear Equation Variable Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    N. N. Yanenko and V. A. Novikov, “On a model of a fluid with a sign-changing coefficient of viscosity,” Chislennye Metody Mekh. Sploshnoi Sredy,4, No. 2, 142–147 (1973).Google Scholar
  2. 2.
    V. S. Belonosov and T. I. Zelenyak, Nonlocal Problems in the Theory of Quasilinear Parabolic Equations [in Russian], Special Course for the Students of the Novosibirsk State University, Novosibirsk (1975).Google Scholar
  3. 3.
    T. I. Zelenyak, V. A. Novikov, and N. N. Yanenko, “On the properties of the solutions of nonlinear equations of variable type,” Chislennye Metody Mekh. Sploshnoi Sredy,5, No. 4, 35–47 (1974).Google Scholar
  4. 4.
    O. V. Besov, V. P. Il'in, and S. M. Nikol'skii, Integral Representations of Functions and Embedding Theorems [in Russian], Nauka, Moscow (1975).Google Scholar
  5. 5.
    O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc. (1968).Google Scholar
  6. 6.
    O. A. Ladyzhenskaya, “On new equations for description of the motion of incompressible viscous fluids and global solvability of boundary-value problems for them,” Tr. Mat. Inst. Akad. Nauk SSSR,102, 85–104 (1967).Google Scholar
  7. 7.
    V. P. Voronko, “Difference schemes for nonlinear equations of variable type,” Chislennye Metody Mekh. Sploshnoi Sredy,8, No. 5, 48–52 (1977).Google Scholar
  8. 8.
    Yu. A. Berezin, G. I. Dudnikova, V. A. Novikov, and N. N. Yanenko, “Analytical and numerical s of equations with sign changing viscosity coefficient,” in: C. M. Brauner, B. Gay, and J. Mathieu (eds.), Singular Perturbations and Boundary Layer Theory, Lecture Notes in Mathematics, Vol. 594, Springer-Verlag, Berlin-New York (1976), pp. 30–38.Google Scholar
  9. 9.
    O. A. Ladyzhenskaya, “On modifications of the Navier-Stokes equations for large velocity gradients,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad. Nauk SSSR,7, 126–154 (1968).Google Scholar
  10. 10.
    K. K. Golovkin, “New model equations of motion of a viscous fluid and their unique solvability,” Tr. Mat. Inst. Akad. Nauk SSSR,102, 29–50 (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • M. M. Lavrent'ev-MI

There are no affiliations available

Personalised recommendations