Advertisement

Siberian Mathematical Journal

, Volume 21, Issue 6, pp 797–804 | Cite as

Problem involving a directional derivative for multicomponent diffusion systems and chemical kinetics

  • V. N. Maslennikova
  • N. V. Gapeeva
Article

Keywords

Chemical Kinetic Directional Derivative Diffusion System Multicomponent Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. McNabb, “Comparison and existence theorems for multicomponent diffusion systems,” J. Math. Anal. Appl.,3, No. 1, 133–144 (1961).Google Scholar
  2. 2.
    V. N. Maslennikova, “On a class of quasi-linear diffusion equations,” Dokl. Akad. Nauk SSSR,146, No. 2, 303–306 (1962).Google Scholar
  3. 3.
    V. N. Maslennikova, “The first boundary-value problem for some quasi-linear systems in the mathematical theory of diffusion,” Vychisl. Mat. Mat. Fiz.,3, No. 3, 467–477 (1963).Google Scholar
  4. 4.
    V. N. Maslennikova, “The first boundary-value problem for quasi-linear diffusion systems,” Dokl. Akad. Nauk SSSR,150, No. 5, 991–994 (1963).Google Scholar
  5. 5.
    L. I. Kamynin and V. N. Maslennikova, “Boundary estimates of the Schauder type for solutions of problems involving a directional derivative for parabolic equations in nocylindrical domains,” Sib. Mat. Zh.,7, No. 1, 83–128 (1966).Google Scholar
  6. 6.
    A. M. Il'in, A. S. Kalashnikov, and O. A. Oleinik, “Second-order linear equations of parabolic type,” Usp. Mat. Nauk,7, No. 3, 3–146 (1962).Google Scholar
  7. 7.
    O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural'tseva, Linear and Quasi-Linear Equations of Parabolic Type, Amer. Math. Soc. (1968).Google Scholar
  8. 8.
    A. Friedman, Partial Differential Equations, Krieger (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • V. N. Maslennikova
  • N. V. Gapeeva

There are no affiliations available

Personalised recommendations