Siberian Mathematical Journal

, Volume 21, Issue 6, pp 773–786 | Cite as

Nontrivial solutions of equations with potential operators

  • V. S. Klimov


Nontrivial Solution Potential Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    D. C. Clark, “A variant of the Liusternik-Schnirelman theorem,” Indiana Univ. Math. J.,22, 65–74 (1972).Google Scholar
  2. 2.
    A. Ambrosetti and P. H. Rabinowitz, “Dual variational methods in critical point theory and applications,” J. Func. Anal.,14, 349–381 (1973).Google Scholar
  3. 3.
    R. S. Palais, “Liusternik-Schnirelman theory on Banach manifolds,” Topology,5, 115–132 (1966).Google Scholar
  4. 4.
    J. P. Goossez, “Nonlinear elliptic boundary value problems for equations with rapidly or slowly increasing coefficients,” Trans. Am. Math. Soc.,190, 163–205 (1974).Google Scholar
  5. 5.
    J. L. Lions, Non-Homogeneous Boundary Value Problems, Springer-Verlag (1972).Google Scholar
  6. 6.
    M. M. Vainberg, Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations, Halsted Press (1974).Google Scholar
  7. 7.
    L. V. Kantorovich and G. P. Akilov, Functional Analysis [in Russian], Nauka, Moscow (1977).Google Scholar
  8. 8.
    M. A. Krasnosel'skii and Ya. B. Rutitskii, Convex Functions and Orlicz Spaces [in Russian], Fizmatgiz, Moscow (1958).Google Scholar
  9. 9.
    S. L. Sobolev, Introduction to the Theory of Cubature Formulas [in Russian], Nauka, Moscow (1974).Google Scholar
  10. 10.
    Yu. G. Reshetnyak, “General theorems on the semicontinuity and convergence with a functional,” Sib. Mat. Zh.,8, No. 5, 1051–1069 (1967).Google Scholar
  11. 11.
    I. V. Skrypnik, Nonlinear Elliptic Equations of Higher Order [in Russian], Naukova Dumka, Kiev (1973).Google Scholar
  12. 12.
    S. I. Al'ber, “The topology of functional manifolds and global variational calculus,” Usp. Mat. Nauk,25, No. 4, 57–122 (1970).Google Scholar
  13. 13.
    V. S. Klimov, “On the rotation of potential vector fields,” Mat. Zametki,20, No. 2, 258–260 (1976).Google Scholar
  14. 14.
    M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations [in Russian], Gostekhizdat, Moscow (1956).Google Scholar
  15. 15.
    C. V. Coffman, “A minimum—maximum principle for a class of nonlinear equations,” J. d'Anal. Math.,22, 391–419 (1969).Google Scholar
  16. 16.
    A. S. Shvarts, “Some estimates of the genus of a topological space in the sense of Krasnosel'skii,” Usp. Mat. Nauk,12, No. 4, 209–214 (1957).Google Scholar
  17. 17.
    V. S. Klimov, “On functionals with an infinite number of critical values,” Mat. Sb.,100, No. 1, 101–115 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • V. S. Klimov

There are no affiliations available

Personalised recommendations