Siberian Mathematical Journal

, Volume 13, Issue 3, pp 457–466 | Cite as

On differential properties of solutions of one class of pseudodifferential equations at infinity. I

  • S. V. Uspenskii


Differential Property Pseudodifferential Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. P. Calderon and A. Zygmund, “Singular integral operators and differential equations,” Amer. J. Math.,79, No. 4, 901–921 (1957).Google Scholar
  2. 2.
    Pseudodifferential Operators [Russian translation], Collection of Papers. Mir, Moscow (1967).Google Scholar
  3. 3.
    M. I. Vishik and G. I. Eskin, “Convolution equations in a bounded domain,” Usp. Matem. Nauk,20, No. 3, 90–152 (1965).Google Scholar
  4. 4.
    M. I. Vishik and G. I. Eskin, “Elliptic convolution equations in a bounded domain and their application,” Usp. Matem. Nauk,22, No. 1, 15–76 (1967).Google Scholar
  5. 5.
    S. N. Bernshtein, Collected Works [in Russian], Vol. 3, Izd. AN SSSR (1960).Google Scholar
  6. 6.
    J. Schauder, “Numerische Abschatzungen in elliptischen linearen Differential-gleichungen,” Studia Math.,5, 34–42 (1937).Google Scholar
  7. 7.
    V. A. Solonikov, “On boundary value problems for linear parabolic systems of differential equations of general type,” Tr. Matem. In-ta Akad. Nauk SSSR,83, 3–163 (1965).Google Scholar
  8. 8.
    S. Agmon, A. Douglis, and L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions,” Comm. Pure Appl. Math.,12, No. 4, 623–727 (1959).Google Scholar
  9. 9.
    S. D. Ivasishen, “Internal estimates of solutions of 2\(\vec b\) parabolic systems,” Dopovidi Akad. Nauk URSR, No. 8, 1011–1016 (1962).Google Scholar
  10. 10.
    A. Marchoud, “Sur les dérivees et sur les differences des fonctions de variables reeles,” J. Math. Pures et Appl.,6, 337–425 (1927).Google Scholar
  11. 11.
    S. Bochner, Lectures on Fourier Integrals [Russian translation], Fizmatgiz, Moscow (1962).Google Scholar
  12. 12.
    A. Zygmund, Trigonometric Series, [Russian translation], Vol. II, Mir, Moscow (1965).Google Scholar
  13. 13.
    S. V. Uspenskii, “On imbedding theorems for weight classes,” Tr. Matem. In-ta Akad. Nauk SSSR,61, 284–303 (1961).Google Scholar
  14. 14.
    S. L. Sobolev, “Density of finite functions in space,” Sib. Matem. Zh.,4, No. 3, 673–682 (1963).Google Scholar
  15. 15.
    L. D. Kudryavtsev, “Variational method for unbounded domains,” Dokl. Akad. Nauk SSSR,157, No. 1, 45–48 (1964).Google Scholar
  16. 16.
    B. R. Vainberg, “On elliptic problems in unbounded domains,” Matem. Sb., 75 (117), No. 3, 454–480 (1968).Google Scholar
  17. 17.
    L. A. Bagirov, “Boundary value problems for elliptic equations in unbounded domains,” Vestnik MGU, Ser. Matem., No. 5, 66–72 (1969).Google Scholar
  18. 18.
    L. A. Bagirov, “Boundary value problems for elliptic and parabolic equations in unbounded domains,” Dokl. Akad. Nauk SSSR,191, No. 3, 511–514 (1970).Google Scholar
  19. 19.
    V. V. Grushin, “Pseudodifferential operators in Ek with bounded symbols,” Funkts. Analiz i ego Prilozheniya,4, No. 3, 37–50 (1970).Google Scholar
  20. 20.
    A. Friedman, Equations with Partial Derivatives of Parabolic Type [Russian translation], Mir, Moscow (1968).Google Scholar
  21. 21.
    S. D. Eidel'man, Parabolic Systems [in Russian], Nauka, Moscow (1964).Google Scholar
  22. 22.
    A. K. Gushchin, “Some estimates of the solutions of boundary value problems for the heat conduction equation in an infinite domain,” Tr. Matem. In-ta Akad. Nauk SSSR,91, 5–18 (1967).Google Scholar
  23. 23.
    A. K. Gushchin, “On stabilizations of the solutions of a parabolic equation,” Matem. In-ta Akad. Nauk SSSR,103, 51–57 (1968).Google Scholar
  24. 24.
    A. K. Gushchin, “On the rate of stabilization of the solution of a boundary value problem for a parabolic equation,” Sib. Matem. Zh.,10, No. 1, 43–57 (1969).Google Scholar
  25. 25.
    S. V. Uspenskii, “Estimations on the infinity of solutions in one class of semielliptic equations,” Acc. naz. dei Lincei, Ser. VIII, Vol. 46, No. 6, 541–545 (1969).Google Scholar
  26. 26.
    J. Genet and Pupion, “Comportement de la solution d'une équation differentielle operationnelle du second ordre lorsque t→∞,” C. R. Acad. Sci.,265, 835–838 (25 Dec, 1967).Google Scholar
  27. 27.
    P. Fife and P. Becala, “The unbounded growth of solutions of linear parabolic differential equations,” Annali della Scuola Normale sup. di Pisa,20, Ser. III, f. 4, 719–732 (1966).Google Scholar
  28. 28.
    V. P. Mikhailov, “On stabilization of the solution of the Cauchy problem for the heat conduction equation,” Dokl. Akad. Nauk SSSR,190, No. 1, 38–41 (1970).Google Scholar
  29. 29.
    V. S. Rabinovich, “Pseudodifferential equations in unbounded domains with conical structure at infinity,” Matem. Sb.,80, No. 1, 77–96 (1969).Google Scholar
  30. 30.
    S. M. Nikol'skii, “Hilbert variational problem,” Izv. Akad. Nauk SSSR, Ser. Matem.,22, No. 5, 599–630 (1958).Google Scholar
  31. 31.
    A. M. Il'in, A. S. Kalashnikov, and O. A. Oleinik, “Linear second order equations of parabolic type,” Usp. Matem. Nauk,17, No. 3, 3–146 (1962).Google Scholar
  32. 32.
    E. M. Landis, “Some questions of the qualitative theory of second order elliptic equations (many-variable case),” Usp. Matem. Nauk,18, No. 1, 3–62 (1963).Google Scholar
  33. 33.
    T. I. Zelenyak and V. P. Mikhailov, “Asymptotic behavior of the solutions of some boundary value problems of mathematical physics as t→∞,” Partial Differential Equations. Transactions of a Symposium Honoring the Sixtieth Birthday of Academician S. L. Sobolev [in Russian], Nauka, Moscow (1970). A more detailed bibliography is presented in [33].Google Scholar

Copyright information

© Consultants Bureau 1972

Authors and Affiliations

  • S. V. Uspenskii

There are no affiliations available

Personalised recommendations