Advertisement

Siberian Mathematical Journal

, Volume 18, Issue 2, pp 225–229 | Cite as

The extensions of a nondensely defined symmetric operator

  • A. N. Kochubei
Article

Keywords

Symmetric Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    C. Bennewitz, Symmetric Relations on a Hilbert Space, Lecture Notes Math., Vol. 280 (1972), pp. 212–218.Google Scholar
  2. 2.
    E. A. Coddington, Extension Theory of Formally Normal and Symmetric Subspaces, Mem. Am. Math. Soc., No. 134, Am. Math. Soc., Providence, Rhode Island (1973).Google Scholar
  3. 3.
    A. N. Kochubei, “On the extensions of symmetric operators and of symmetric binary relations,” Mat. Zametki, 17, No. 1, 41–48 (1975).Google Scholar
  4. 4.
    E. A. Coddington, “Self-adjoint subspace extensions of nondensely defined symmetric operators,” Bull. Am. Math. Soc.,79, No. 4, 712–715 (1973).Google Scholar
  5. 5.
    E. A. Coddington, “Self-adjoint subspace extensions of nondensely defined symmetric operators,” Ad. Math.,14, No. 3, 309–332 (1974).Google Scholar
  6. 6.
    M. A. Krasnosel'skii, “Self-adjoint extensions of Hermitian operators,” Ukr. Mat. Zh.,1, No. 1, 21–38 (1949).Google Scholar
  7. 7.
    A. V. Shtraus, “On the extensions and the characteristic function of a symmetric operator,” Izv. Akad. Nauk SSSR, Ser. Mat.,32, No. 1, 186–207 (1968).Google Scholar
  8. 8.
    A. V. Shtraus, “Certain questions on the theory of the extension of symmetric non-self-adjoint operators,” Proceedings of the second Scientific Conference of the Mathematics Faculties of Pedagogic Institutes of the Volga Region [in Russian], Vol. 1, Izd. Kuibyshev. Ped. Inst., Kuibyshev (1962), pp. 121–124.Google Scholar
  9. 9.
    M. L. Gorbachuk, A. N. Kochubei, and M. A. Rybak, “On certain classes of extensions of differential operators in a space of vector-functions,” in: Applications of Functional Analysis to the Problems of Mathematical Physics [in Russian], Izd. Inst. Mat. Akad. Nauk Ukr. SSR, Kiev (1973), pp. 56–82.Google Scholar
  10. 10.
    M. L. Gorbachuk, A. N. Kochubei, and M. A. Rybak, “Dissipative extensions of differential operators in a space of vector-functions,” Dokl. Akad. Nauk SSSR,205, No. 5, 1029–1032 (1972).Google Scholar
  11. 11.
    R. Arens, “Operational calculus of linear relations,” Pac. J. Math.,11, No. 1, 9–23 (1961).Google Scholar
  12. 12.
    A. Dijksma and H. S. V. de Snoo, “Self-adjoint extensions of symmetric subspaces,” Pac. J. Math.54, No. 1, 71–100 (1974).Google Scholar
  13. 13.
    M. L. Gorbachuk, “Self-adjoint boundary problems for a second-order differential equation with an unbounded operator coefficient,” Funkts. Anal. Prilozhen.,5, No. 1, 10–21 (1971).Google Scholar
  14. 14.
    Yu. M. Berezanskii, Eigenfunction Expansions of Self-Adjoint Operators [in Russian], Naukova Dumka, Kiev (1965).Google Scholar
  15. 15.
    A. M. Krall, “Differential-boundary operators,” Trans. Am. Math. Soc.,154, 429–456 (1971).Google Scholar
  16. 16.
    O. G. Storozh, “Self-adjoint operators related to differential operators,” Dopov. Akad. Nauk Ukr. RSR, Ser. A, No. 2, 134–137 (1974).Google Scholar
  17. 17.
    E. A. Coddington, “Self-adjoint problems for nondensely defined ordinary differential operators and their eigenfunction expansions,” Adv. Math.,15, No. 1, 1–40 (1975).Google Scholar
  18. 18.
    F. S. Rofe-Beketov, “On the self-adjoint extensions of differential operators in a space of vector-functions,” Teor. Funktsii. Funkts. Anal. Prilozhen.,8, 3–21 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • A. N. Kochubei

There are no affiliations available

Personalised recommendations