Advertisement

Siberian Mathematical Journal

, Volume 18, Issue 2, pp 218–224 | Cite as

The closed graph theorem

  • P. P. Zabreiko
  • E. I. Smirnov
Article
  • 29 Downloads

Keywords

Closed Graph Graph Theorem Closed Graph Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. Grothendieck, Produits Tensoriels Topologiques et Espaces Nucleaires, Mem. Am. Math. Soc., No. 16, Am. Math. Soc., Providence, Rhode Island (1955).Google Scholar
  2. 2.
    W. Slowikowski, “Quotient spaces and the open map theorem,” Bull. Am. Math. Soc.,67, 467–470 (1961).Google Scholar
  3. 3.
    W. Slowikowski, “Quotient spaces and the open map theorem,” Bull Am. Math. Soc.,67, No. 5, 498–500 (1961).Google Scholar
  4. 4.
    D. A. Raikov, “A two-sided closed graph theorem for linear topological spaces,” Sib. Mat. Zh.,6, No. 2, 353–372 (1966).Google Scholar
  5. 5.
    M. De Wilde, “Réseaux dans les éspaces linéaires à semi-norms,” Mém Soc. Roy. Sci. Liège,18, No. 2, 1–144 (1969).Google Scholar
  6. 6.
    M. De Wilde, “Sur la théorème du graphe ferme,” C. R. Acad. Sci., Paris,265, No. 14, A 376–379 (1967).Google Scholar
  7. 7.
    M. De Wilde, “Théorème du graphe ferme et éspaces a réseau absorbant,” Bull. Math. Soc. Sci. Math. R. S. Roumanie,11, No. 2, 225–238 (1968).Google Scholar
  8. 8.
    M. Nakamura, “On quasi-Souslin space and closed graph theorem,” Proc. Jpn. Acad.46, No. 6, 514–517 (1970).Google Scholar
  9. 9.
    M. Nakamura, “On the closed graph theorem,” Proc. Jpn. Acad.,46, No. 8, 846–849 (1970).Google Scholar
  10. 10.
    M. Nakamura, “On the closed graph theorem. II,” Proc. Jpn. Acad.,48, No. 2, 108–109 (1972).Google Scholar
  11. 11.
    M. Nakamura, “On a generalization of the spaces introduced by M. De Wilde, and the closed graph theorem,” Nat. Sci. Rep., Ochanomizu Univ.,22, No. 2, 137–142 (1971).Google Scholar
  12. 12.
    H. H. Schaefer, Topological Vector Spaces, Macmillan, New York (1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • P. P. Zabreiko
  • E. I. Smirnov

There are no affiliations available

Personalised recommendations