Advertisement

Journal of Intelligent Information Systems

, Volume 5, Issue 2, pp 121–143 | Cite as

Data model and query evaluation in global information systems

  • Alon Y. Levy
  • Divesh Srivastava
  • Thomas Kirk
Article

Abstract

Global information systems involve a large number of information sources distributed over computer networks. The variety of information sources and disparity of interfaces makes the task of easily locating and efficiently accessing information over the network very cumbersome. We describe an architecture for global information systems that is especially tailored to address the challenges raised in such an environment, and distinguish our architecture from architectures of multidatabase and distributed database systems. Our architecture is based on presenting a conceptually unified view of the information space to a user, specifying rich descriptions of the contents of the information sources, and using these descriptions for optimizing queries posed in the unified view. The contributions of this paper include: (1) we identify aspects of site descriptions that are useful in query optimization; (2) we describe query optimization techniques that minimize the number of information sources accessed; and (3) we demonstrate the need for interleaving planning and query execution in such a system, and present an algorithm for this purpose.

Keywords

Global information systems networked information sources distributed query processing dynamic query plans site descriptions multidatabases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreesen, M., and Bina, E. (1994). NCSA Mosaic: A global hypermedia system.Internet Research.Google Scholar
  2. Arens, Y., Chee, C. Y., Hsu, C. nan, and Knoblock, C. A. (1994). Retrieving and integrating data from multiple information sources.International Journal on Intelligent and Cooperative Information Systems.Google Scholar
  3. Borgida, A. (1992). Description logics are not just for the FLIGHTLESS-BIRDS: A new look at the utility and foundations of description logics. Technical Report DCS-TR-295, Department of Computer Science, Rutgers University.Google Scholar
  4. Borgida, A., Brachman, R. J., McGuinness, D. L., and Resnick, L. A. (1989). Classic: A structural data model for objects. InProceedings of the 1989 ACM SIGMOD International Conference on Management of Data, pages 59–67.Google Scholar
  5. Borgida, A., and Patel-Schneider, P. F. (1994). A semantics and complete algorithm for subsumption in the Classic description logic.Journal of Artificial Intelligence Research, 1:277–308.Google Scholar
  6. Brachman, R. J., Borgida, A., McGuinness, D. L., Patel-Schneider, P. F., and Resnick, L. A. (1991). Living with Classic: When and how to use a Kl-one-like language. In J. Sowa, editor,Principles of Semantic Networks, pages 401–456. Morgan Kaufmann, San Mateo, CA.Google Scholar
  7. Chawathe, S., Garcia-Molina, H., Hammer, H., Ireland, K., Papakonstantinon, Y., Ullman, J. D., and Widom, J. (1994). The TSIMMIS project: Integration of heterogeneous information sources. InProceedings of IPSJ, Tokyo, Japan.Google Scholar
  8. Chaudhuri, S., Krishnamurthy, R., Potamianos, S., and Shim, K. (1995). Optimizing queries with materialized views. InProceedings of International Conference on Data Engineering.Google Scholar
  9. Collet, C., Huhns, M. N., and Shen, W.-M. (1991). Resource integration using a large knowledge base in Carnot.IEEE Computer, pages 55–62.Google Scholar
  10. Etzioni, O., Golden, K., and Weld, D. (1994). Tractable closed world reasoning with updates. InProceedings of KR-94.Google Scholar
  11. Genesereth, M. R. (1992). An agent-based framework for software interoperability. InProceedings of the Software Technology Conference, Los Angeles, CA.Google Scholar
  12. Kifer, M., Kim, W., and Sagiv, Y. (1992). Querying object-oriented databases. InProceedings of the ACM SIGMOD Conference on Management of Data, pages 393–402, San Diego, California.Google Scholar
  13. Kirk, T., Levy, A. Y., Sagiv, Y., and Srivastava, D. (1995). The Information Manifold. InWorking Notes of the AAAI Spring Symposium on Information Gathering from Heterogeneous, Distributed Environments, Stanford, CA.Google Scholar
  14. Knoblock, C. A., and Levy, A. Y. (1995). Exploiting run-time information to locate relevant data sources. InWorking Notes of the AAAI Spring Symposium on Information Gathering from Heterogeneous, Distributed Environments, Stanford, CA.Google Scholar
  15. Levy, A. Y., Mendelzon, A. O., Sagiv, Y., and Srivastava, D. (1995). Answering queries using views. InProceedings of the ACM Symposium on Principles of Database Systems, San Jose, CA.Google Scholar
  16. Levy, A. Y, Mumick, I. S., and Sagiv, Y. (1994). Query optimization by predicate move-around. InProceedings of the International Conference on Very Large Databases, Santiago, Chile.Google Scholar
  17. Levy, A. Y, Mumick, I. S., Sagiv, Y., and Shmueli, O. (1993). Equivalence, query-reachability and satisfiability in Datalog extensions. InProceedings of the ACM Symposium on Principles of Database Systems, Washington, D.C.Google Scholar
  18. Levy, A. Y., and Rousset, M. C. (1995). CARIN — A language combining Horn rules and description logics. InWorking notes of the International Workshop on Description Logics, Rome, Italy.Google Scholar
  19. Levy, A. Y., and Sagiv, Y. (1992). Constraints and redundancy in Datalog. InProceedings of the Eleventh ACM Symposium on Principles of Database Systems, San Diego, CA.Google Scholar
  20. Litwin, W., Mark, L., and Roussopoulos, N. (1990). Interoperability of multiple autonomous databases.ACM Computing Surveys, 22(3):267–293.Google Scholar
  21. MacGregor, R. M. (1987). A deductive pattern matcher. InProceedings of the Sixth National Conference on Artificial Intelligence, pages 403–408.Google Scholar
  22. Morris, K. A. (1988). An algorithm for ordering subgoals in NAIL! InProceedings of the ACM Symposium on Principles of Database Systems, pages 82–88.Google Scholar
  23. Rajaraman, A., Sagiv, Y., and Ullman, J. D. (1995). Answering queries using templates with binding patterns. InProceedings of the ACM Symposium on Principles of Database Systems, San Jose, CA.Google Scholar
  24. Sheth, A. P., and Larson, J. A. (1990). Federated database systems for managing distributed, heterogeneous, and autonomous databases.ACM Computing Surveys, 22(3): 183–236.Google Scholar
  25. Srivastava, D., and Ramakrishnan, R. (1993). Pushing constraint selections.Journal of Logic Programming, 16(3–4):361–414.Google Scholar
  26. Srivastava, D., Ramakrishnan, R., Seshadri, P., and Sudarshan, S. (1993). Coral++: Adding object-orientation to a logic database language. InProceedings of the International Conference on Very Large Databases, Dublin, Ireland.Google Scholar
  27. Subrahmanian, V. S., Adali, S., Brink, A., Emery, R., Lu, J., Rajput, A., Rogers, T., Ross, R., and Ward, C. HERMES: A heterogeneous reasoning and mediator system. University of Maryland Technical Report.Google Scholar
  28. Ullman, J. D. (1989).Principles of Database and Knowledge-Base Systems, Volumes I and II. Computer Science Press.Google Scholar
  29. Wright, J. R., Weixelbaum, E. S., Brown, K., Vesonder, G. T., Palmer, S. R., Berman, J. I., and Moore, H. H. (1993). A knowledge-based configurator that supports sales, engineering, and manufacturing at AT&T network systems. InProceedings of the Innovative Applications of Artificial Intelligence Conference, pages 183–193.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Alon Y. Levy
    • 1
  • Divesh Srivastava
    • 1
  • Thomas Kirk
    • 1
  1. 1.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations