Skip to main content
Log in

A univalent spiral-vortex model for separated flow past a polygonal obstacle

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Summary

A free-streamline flow model for flow past a polygonal obstacle with a near-wake terminating in Tulin's double spiral vortices is constructed. The flows are univalent for a large class of geometries. In addition a criterion is given for determining the underpressure as function of the Reynolds number using the Stokes solution for diffusion of a vortex sheet, and an extension of Tulin and Hsu's matching theory to transitional flows.

Sunto

Si costruisce un modello di flusso con scia e vortici a doppia spirale alla Tulin per un ostacolo poligonale arbitrario. Il flusso risulta univalente per un' ampia classe di geometrie. Inoltre viene proposto un criterio per correlare il parametro del modello al numero di Reynolds del corrispondente flusso viscoso, combinando la soluzione di Stokes per la diffusione di uno strato di vortici con la teoria di Tulin e Hsu (1980).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Birkhoff and E. H. Zarantonello,Jets, Wakes, and Cavities, Academic Press, New York 1957.

    MATH  Google Scholar 

  2. M. I. Gurevich,Theory of Jets in an Ideal Fluid, Academic Press, New York 1965.

    Google Scholar 

  3. D. Gilbarg,Jets and Cavities, Handbuch der Phys.9, 311–445, Springer, Berlin 1960.

    Google Scholar 

  4. M. Tulin,Supercavitating flows-small perturbation theory, J. Ship Res.7, 16–37 (1964).

    MathSciNet  Google Scholar 

  5. T. Y. Wu,Cavity and wake flows, Ann. Rev. Fluid Mech., 243–284 (1972).

    Article  Google Scholar 

  6. B. E. Larock and R. L. Street,A nonlinear theory for fully cavitating hydrofoil in a transverse gravity field, J. Fluid Mech.29, 317–336 (1967).

    Article  Google Scholar 

  7. B. E. Larock and R. L. Street,A Riemann-Hilbert problem for nonlinear fully cavitating flow, J. Ship Res.29, 170–178 (1965).

    MathSciNet  Google Scholar 

  8. O. Furuya,Three-dimensional theory of supercavitating hydrofoil near a free surface, J. Fluid Mech.71, 339–359 (1975).

    Article  Google Scholar 

  9. A. R. Elcrat,Separated flow past a plate with spoiler, SIAM J. Math. Anal.13, 632–639 (1982).

    Article  MathSciNet  Google Scholar 

  10. A. R. Elcrat and L. N. Trefethen,Classical free-streamline flow over a polygonal obstacle, J. Comput. Appl. Math.14, 251–265 (1986).

    Article  MathSciNet  Google Scholar 

  11. P. Bassanini,Wake flow past a plate with spoiler, Z. angew. Math. Phys.35, 658–670 (1984).

    Article  MathSciNet  Google Scholar 

  12. L. N. Trefethen,Numerical computation of the Schwarz-Christoffel transformation, SIAM J. Sci. Stat. Comput.1, 82–102 (1980).

    Article  MathSciNet  Google Scholar 

  13. J. Serrin,Existence theorems for some hydrodynamical free boundary problems, J. Rat. Mech. Anal.1, 1–48 (1952).

    MathSciNet  MATH  Google Scholar 

  14. H. K. Cheng and N. Rott,Generalizations of the inversion formula of thin airfoil theory, J. Rat. Mech. Anal.3, 357–382 (1954).

    MathSciNet  MATH  Google Scholar 

  15. F. D. Gakhov,Boundary Value Problems, Pergamon, New York 1966.

    Book  Google Scholar 

  16. S. Goldstein,Modern Developments in Fluid Dynamics, Dover, New York 1965.

    Google Scholar 

  17. H. Schlichting,Boundary Layer Theory, McGraw-Hill, New York 1986.

    MATH  Google Scholar 

  18. S. F. Hoerner,Fluid-Dynamic Drag, publ. by the author (1958).

  19. M. J. D. Powell,A FORTRAN subroutine for solving systems of nonlinear algebraic equations, in: P. Rabinowitz, Ed., Numerical Methods for Nonlinear Algebraic Equations, Gordon and Breach, London 1970.

    Google Scholar 

  20. K. Reppe,Berechnung von Magnetfeldern mit Hilfe der konformen Abbildung durch numerische Integration der Abbildungsfunktion von Schwarz-Christoffel, Siemens Forsch. Entwickl. Ber.8, 190–195 (1975).

    MATH  Google Scholar 

  21. W. H. Wentz,Wind tunnel tests of the GA (W)-2 airfoil with 20% aileron, 25% slotted flap, 30% Fowler flap and 10% slot-lip spoiler, NASA CR-145139 (1977).

  22. J. N. Newman,Marine Hydrodynamics, MIT Press, Cambridge, Mass. 1978.

    Google Scholar 

  23. A. Roshko and W. Fiszdon,On the persistence of transition in the near-wake, 60th. Anniv. Volume for L. I. Sedov, USSR Nat. Committee on Theor. Appl. Mech., 1967, pp. 606–616.

  24. M. P. Tulin and C. C. Hsu,New applications of cavity flow theory, Proc. ONR Symposium on Naval Hydrodynamics, Tokyo, 1980; Nat. Academy Press, pp. 107–130.

  25. N. Curle and H. J. Davies,Modern Fluid Dynamics, Vol. I, Van Nostrand, London 1968.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bassanini, P., Elcrat, A. A univalent spiral-vortex model for separated flow past a polygonal obstacle. Z. angew. Math. Phys. 39, 455–467 (1988). https://doi.org/10.1007/BF00948957

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00948957

Keywords

Navigation