Skip to main content
Log in

Quantum equations of motion and the Liouville equation

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Equations of motion for explicitly time-dependent operators in the Heisenberg and Schrödinger pictures, respectively, are reviewed. A simple transformation reduces the related equation in the Heisenberg picture to closed form. An algorithm is introduced for the classical limit which, in either picture, returns the classical equation of motion for dynamical functions. Applications of this algorithm to the equation of motion for the density matrix reduces it to the classical Liouville equation. A property related to this algorithm is established for the commutator of any two analytic functions of finite polynomials of conjugate variables. Thus, if\(\hat F\) and Ĝ are two such functions and\(\hat F^\prime \) and Ĝ′ contain an arbitrary permutation of variables, then

$$[\hat F,\hat G] = [\hat F^\prime ,\hat G^\prime ] + \hbar ^2 \hat{A}$$

where  is a remainder commutator. In the classical limit [\(\hat F\), Ĝ] is invariant to such permutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Snygg,Am. J. Phys. 50, 906 (1982).

    Google Scholar 

  2. L. E. Ballentine,Am. J. Phys. 52, 74 (1984).

    Google Scholar 

  3. R. L. Liboff,Introduction to the Theory of Kinetic Equations (Krieger, Melbourne, Florida, 1979).

    Google Scholar 

  4. R. K. Pathria,Statistical Mechanics (Pergamon, New York, 1972).

    Google Scholar 

  5. P. A. M. Dirac,The Principles of Quantum Mechanics, 3rd edn. (Clarendon, London, 1974).

    Google Scholar 

  6. K. Gottfried,Quantum Mechanics (W. A. Benjamin, New York, 1966).

    Google Scholar 

  7. E. Merzbacher,Quantum Mechanics (Wiley, New York, 1961).

    Google Scholar 

  8. A. Messiah,Quantum Mechanics (Wiley, New York, 1961).

    Google Scholar 

  9. R. L. Liboff,Introductory Quantum Mechanics (Holden-Day, Oakland, California, 1968).

    Google Scholar 

  10. L. I. Schiff,Quantum Mechanics, 34rd edn. (McGraw Hill, New York, 1968).

    Google Scholar 

  11. D. Bohm,Quantum Theory (Prentice-Hall, Englewood Cliffs, New Jersey, 1951).

    Google Scholar 

  12. R. L. Liboff,Found. Phys. 5, 271 (1975).

    Google Scholar 

  13. R. L. Liboff,Int. J. Th. Phys. 185 (1979).

  14. J. von Neumann,Mathematical Foundations of Quantum Mechanics, (Princeton University Press, Princeton, New Jersey, 1955).

    Google Scholar 

  15. L. Reichl,A Modern Course in Statistical Physics (University of Texas Press, Austin, Texas, 1980).

    Google Scholar 

  16. P. A. M. Dirac,Proc. Cambridge Philos. Soc. 25, 62 (1929).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liboff, R.L. Quantum equations of motion and the Liouville equation. Found Phys 17, 981–991 (1987). https://doi.org/10.1007/BF00938008

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00938008

Keywords

Navigation