Skip to main content
Log in

Biology of L-lysine overproduction byCorynebacterium glutamicum

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Summary

The Gram positive bacteriumCorynebacterium glutamicum is used for the production of L-lysine. This review focuses on the progress achieved in the past five years for a deeper understanding of lysine overproduction. This period also coincides with decisive progress in the use of genetic engineering techniques for analysing and increasing the metabolite flux inC. glutamicum. It was thus demonstrated that thein vivo activity of the allosterically controlled aspartate kinase is important for flux control, but in addition also the amount of the dihydrodipicolinate synthase. An outstanding feature ofC. glutamicum is the split lysine biosynthesis pathway. NMR investigations have clearly shown that both pathways are simultaneously usedin vivo and that the flux ratio depends on nitrogen availability. The cellular synthesized lysine is eventually exported into the external medium through a specific carrier. Interestingly lysine producers have other export characteristics so that the carrier properties also seem to be important for increased metabolite flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bonnassie S, Oreglia AM, Sicard J (1990) Nucleotide sequence of thedapA gene fromCorynebacterium glutamicum. Nucleic Acids Res 18: 6421

    Google Scholar 

  • Bröer S, Krämer R (1990) Lysine uptake and exchange inCorynebacterium glutamicum. J Bacteriol 172: 7241–7248

    Google Scholar 

  • Bröer S, Krämer R (1991) Lysine excretion byCorynebacterium glutamicum 2. Energetics and mechanism of the transport system. Eur J Biochem 202: 137–143

    Google Scholar 

  • Bröer S, Eggeling L, Krämer R (1993) Strains ofCorynebacterium glutamicum with different lysine productivities may have different lysine excretion systems. Appl Environ Microbiol 59: 316–321

    Google Scholar 

  • Cremer J, Treptow C, Eggeling L, Sahm H (1988) Regulation of enzymes of lysine biosynthesis inCorynebacterium glutamicum. J Gen Microbiol 134: 3221–3229

    Google Scholar 

  • Cremer J, Eggeling L, Sahm H (1991) Control of the lysine biosynthetic sequence inCorynebacterium glutamicum as analyzed by overexpression of the individual corresponding genes. Appl Environ Microbiol 57: 1746–1752

    Google Scholar 

  • Ebbighausen H, Weil B, Krämer R (1989a) Transport of branched-chain amino acids inCorynebacterium glutamicum. Arch Microbiol 151: 238–244

    Google Scholar 

  • Ebbighausen H, Weil B, Krämer R (1989b) Isoleucine excretion inCorynebacterium glutamicum: evidence for a specific efflux carrier system. Appl Microbiol Biot 31: 184–190

    Google Scholar 

  • Eikmanns B, Kleinertz E, Liebl W, Sahm H (1991) A family ofCorynebacterium glutamicum/Escherichia coli shuttle vectors for gene cloning, controlled gene expression, and promoter probing. Gene 102: 93–98

    Google Scholar 

  • Eikmanns B (1992) Identification, Sequence analysis, and expression of aCorynebacterium glutamicum gene cluster encoding the three glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, and triosephosphate isomerase. J Bacteriol 174: 6067–6086

    Google Scholar 

  • Erdmann A, Weil B, Krämer R (1993) Lysine secretion byCorynebacterium glutamicum wild type triggered by dipeptide uptake. J Gen Microbiol 139: 3115–3122

    Google Scholar 

  • Follettie MT, Shin HK, Sinskey JA (1988) Organization and regulation of theCorynebacterium glutamicum hom-thrB and thrC loci. Mol Microbiol 2: 53–62

    Google Scholar 

  • Graves LM, Switzer RL (1990) Aspartokinase III, a new isozyme inBacillus subtilis 168. J Bacteriol 172: 218–223

    Google Scholar 

  • Ishino S, Yamaguchi K, Shirahata K, Araki K (1984) Involvement of meso-diaminopimelate D-dehydrogenase in lysine biosynthesis inCorynebacterium glutamicum. Agr Biol Chem Tokyo 48: 2557–2560

    Google Scholar 

  • Ishino S, Muzikami T, Yamaguchi K, Katsumata R, Araki K (1988) Cloning and sequencing of the meso-diaminopimelate-D-dehydrogenase (ddh) gene ofCorynebacterium glutamicum. Agr Biol Chem Tokyo 52: 2903–2909

    Google Scholar 

  • Ishino S, Shimomura-Nishimuta J, Yamaguchi K, Shirahata K, Araki K (1991) 13C Nuclear magnetic resonance studies of glucose metabolism in L-glutamic acid and L-lysine fermentation byCorynebacterium glutamicum. J Gen Appl Microbiol Tokyo 37: 157–165

    Google Scholar 

  • Kalinowski J, Bachmann B, Thierbach G, Pühler A (1990) Aspartokinase genes lysCα and lysCβ overlap and are adjacent to the aspartateβ-semialdehyde dehydrogenase gene and inCorynebacterium glutamicum. Mol Gen Genet 224: 317–324

    Google Scholar 

  • Kalinowski J, Cremer J, Bachmann B, Eggeling L, Sahm H, Pühler A (1991) Genetic and biochemical analysis of the aspartokinase fromCorynebacterium glutamicum. Mol Microbiol 5: 1197–1204

    Google Scholar 

  • Katsumata R, Ozaki A, Oka T, Furuya K (1984) Protoplast transformation of Glutamate-producing bacteria with plasmid DNA. J Bacteriol 159: 306–311

    Google Scholar 

  • Kinoshita S, Udaka S, Shimono M (1957) The production of amino acids by fermentation process. J Gen Appl Microbiol Tokyo 3: 193–205

    Google Scholar 

  • Kiss RD, Stephanopoulos G (1991) Metabolic activity control of the L-lysine fermentation by restrained growth fed-batch strategies. Biotechnol Prog 7: 501–509

    Google Scholar 

  • Kleemann A, Leuchtenberger W, Hoppe B, Tanner H (1985) Amino acids Ullmanns' encyclopedia of industrial chemistry 2A, 57–97. VCH Verlagsgesellschaft mbH, Weinheim

    Google Scholar 

  • Marcel T, Archer JAC, Mengin-Lecreulx D, Sinskey AJ (1990) Nucleotide sequence and organization of the upstream region of theCorynebacterium glutamicum lysA gene. Mol Microbiol 4: 1819–1830

    Google Scholar 

  • Martin JF (1989) Molecular genetics of amino acid-producing corynebacteria. Society for general microbiology Symposium 25–59. Cambridge University Press

  • Misono H, Togawa K, Yamamoto H, Soda T (1979) Meso-Diaminopimelate D-dehydrogenase: distribution and the reaction product. J Bacteriol 137: 22–27

    Google Scholar 

  • Misono H, Soda K (1980) Properties of meso-diaminopimelate D-dehydrogenase fromBacillus sphaericus. J Biol Chem 255: 10599–10605

    Google Scholar 

  • Miyajima R, Otsuka S, Shiio I (1968) Regulation of aspartate family amino acid biosynthesis inBrevibacterium flavum. Inhibition by amino acids of the enzymes in threonine biosynthesis. J Biochem (Tokyo) 63: 139–148

    Google Scholar 

  • Neidhardt FC (1990) Physiology of the bacterial cell: a molecular approach. Sinauer Associates, Sunderland MA

    Google Scholar 

  • Niederberger P, Prasad R, Miozarri G, Kacser H (1992) A strategy for increasing an in vivo flux by genetic manipulations. The tryptophan system. Biochem J 287: 473–479

    Google Scholar 

  • O'Reagan M, Thierbach G, Bachmann B, Villeval V, Lepage P, Viret J, Lemoine Y (1989) Cloning and nucleotide sequence of the phosphoenolpyruvate carboxylase-coding gene ofCorynebacterium glutamicum ATCC 13032. Gene 77: 237–251

    Google Scholar 

  • Pátek M, Krumbach K, Eggeling L, Sahm H (1994) Leucine synthesis inCorynebacterium glutamicum: Enzyme activities, structure of leuA, and effect of leuA inactivation on lysine synthesis. Appl Environ Microbiol 60: 133–140

    Google Scholar 

  • Peters P, Eikmans BJ, Thierbach G, Sahm H (1993) Phosphoenolpyruvate carboxylase inCorynebacterium glutamicum is dispensable for growth and lysine production. FEMS Microbiol Lett 112: 269–274

    Google Scholar 

  • Pisabarro A, Malumbres M, Mateos LM, Oguiza JA, Martin JF (1993) A cluster of three genes (dapA, orf2, and dapB) ofBrevibacterium lactofermentum encodes dihydrodipicolinate synthase, dihydrodipicolinate reductase, and a third polypeptide of unknown function. J Bacteriol 175: 2743–2749

    Google Scholar 

  • Rossol I, Pühler A (1992) TheCorynebacterium glutamicum aecD gene encodes a C-S lyase withα,β-elimination activity that degrades aminoethylcysteine. J Bacteriol 174: 2968–2977

    Google Scholar 

  • Sano K, Shiio I (1970) Microbial production of L-lysine III. Production by mutants resistant to S-(2-aminoethyl)-L-cysteine. J Gen Appl Microbiol 16: 373–391

    Google Scholar 

  • Schrumpf B, Schwarzer A, Kalinowski J, Pühler A, Eggeling L, Sahm H (1991) A functionally split pathway for lysine synthesis inCorynebacterium glutamicum. J Bacteriol 173: 4510–4516

    Google Scholar 

  • Schrumpf B, Eggeling L, Sahm H (1992) Isolation and prominent characteristics of an L-lysine hyperproducing strain ofCorynebacterium glutamicum. Appl Microbiol Biotechnol 37: 566–571

    Google Scholar 

  • Schwarzer A, Pühler A (1990) Genetic manipulation of the amino acid-producingCorynebacterium glutamicum strain ATCC 13032 by gene disruption and gene replacement. Biomed Tech 9: 84–87

    Google Scholar 

  • Seep-Feldhaus AH, Kalinowski J Pühler A (1991) Molecular analysis of theCorynebacterium glutamicum lysI gene involved in lysine uptake. Mol Microbiol 5: 2995–3005

    Google Scholar 

  • Sharp PM, Mitchell KJ (1993)Corynebacterium glutamicum arginyl-tRNA synthetase. Mol Microbiol 8: 200

    Google Scholar 

  • Shiio I, Miyajima R (1969) Concerted inhibition and its reversal by end products of aspartate kinase inBrevibacterium flavum. J Biol Chem (Tokyo) 65: 849–859

    Google Scholar 

  • Shiio I, Sano K (1969) Microbial production of L-lysine II. Production by mutants sensitive to threonine or methionine. J Gen Appl Microbiol 15: 267–287

    Google Scholar 

  • Shiio I, Yokota A, Toride Y, Sugimoto S (1989) Threonine production by dihydrodipicolinate synthase-defective mutants ofBrevibacterium flavum. Agr Biol Chem (Tokyo) 53: 41–48

    Google Scholar 

  • Sonntag K, Eggeling L, De Graaf AA, Sahm H (1993) Flux partitioning in the split pathway of lysine synthesis inCorynebacterium glutamicum. Quantification by 13C- and 1H-NMR spectroscopy. Eur J Biochem 213: 1325–1331

    Google Scholar 

  • Sung H-C, Takahasi M, Tamaki H, Tachiki T, Kumagai H, Tochikura T (1985) Ammonia assimilation by glutamine synthetase/glutamate synthase system inBrevibacterium flavum. J Ferment Technol 63: 5–19

    Google Scholar 

  • Tempest DW, Neijssel OM (1992) Physiological and energetic aspects of bacterial metabolite overproduction. FEMS Microbiol Lett 100: 169–176

    Google Scholar 

  • Tosaka O, Ishihara M, Morinaga Y, Takinami M (1979) Mode of conversion of aspartoβ-semialdehyde to L-threonine and L-lysine inBrevibacterium lactofermentum. Agr Biol Chem 43: 265–270

    Google Scholar 

  • Vallino JJ, Stephanopoulos G (1993) Metabolic flux distributions inCorynebacterium glutamicum during growth and lysine overproduction. Biotech Bioeng 41: 633–646

    Google Scholar 

  • Weinberger S, Gilvarg C (1970) Bacterial distribution of the use of succinyl and acetyl blocking groups in diaminopimelic acid biosynthesis. J Bacteriol 101: 323–324

    Google Scholar 

  • Yamaguchi K, Ishino S, Araki K, Shirahata K (1986) 13-NMR Studies of lysine fermentation with aCorynebacterium glutamicum mutant. Agr Biol Chem 50: 2453–2459

    Google Scholar 

  • Yeh P, Sicard AM, Sinskey AJ (1988) General organization of the genes specifically involved in the diaminopimelate-lysine biosynthetic pathway ofCorynebacterium glutamicum. Mol Gen Genet 212: 105–111

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eggeling, L. Biology of L-lysine overproduction byCorynebacterium glutamicum . Amino Acids 6, 261–272 (1994). https://doi.org/10.1007/BF00813746

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00813746

Keywords

Navigation