Advertisement

Amino Acids

, Volume 6, Issue 1, pp 65–96 | Cite as

Studies on advanced glycation end products by recent mass spectrometric techniques

  • A. Lapolla
  • D. Fedele
  • P. Traldi
Article

Summary

The results obtained by different mass spectrometric approaches in the field of advanced glycation of proteins are reported and discussed in detail in comparison with those obtained by other analytical methodologies (fluorescence and absorbance spectroscopies, radioimmunoassay, enzyme-linked immunosorbent assay). They have been subdivided in three main groups: analysis on degraded glycated proteins, direct analysis of glycated proteins and studies on the reaction between protected lysine and glucose. The general overview so achieved indicate mass spectrometry as a particularly valid analytical method in this field of research.

Keywords

Amino acids Diabetes Non enzymatic glycation Advanced glycation end products (AGE) Mass spectrometry HPLC Laser desorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arpino P (1992) Combined liquid chromatography mass spectrometry. Part III: applications of thermospray. Mass Spectrom Rev 11: 3–40Google Scholar
  2. Barber H, Bordoli RS, Sedgwick RD, Tyler AN (1981) Fast atom bombardment as an ion source in mass spectrometry. Nature 293: 270–275Google Scholar
  3. Boon JJ (1992) Analytical pyrolysis mass spectrometry: new vistas opened by temperature resolved in-source PY MS. Int J Mass Spectrom Ion Processes 118/119: 755–788Google Scholar
  4. Brownlee M, Vlassara H, Cerami A (1984) Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Ann Intern Med 101: 527–537Google Scholar
  5. Brownlee M, Vlassara H, Cerami A (1988) Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med 318: 1315–1321Google Scholar
  6. Busch KL, Glish GL, McLuckey SA (1988) Mass spectrometry/Mass spectrometry, techniques and applications of tandem mass spectrometry. In: Busch KL, Glish GL, McLuckey SA, (eds) VCH, New YorkGoogle Scholar
  7. Chang JCF, Ulrich PC, Bucala R, Cerami A (1985) Detection of an advanced glycosylation product bound to protein in situ. J Biol Chem 13: 7970–7974Google Scholar
  8. Dyer DG, Blackledge JA, Thorpe JR, Baynes JW (1991) Formation of pentosidine during nonenzymatic browning of protein by glucose: identification of glucose and other carbohydrates as possible precursors of pentosidine in vivo. J Biol Chem 266: 11654–11660Google Scholar
  9. Gelpi E (1992) Trends in biochemical and biomedical applications of mass spectrometry. Int J Mass Spectrom Ion Processes 118/119: 683–721Google Scholar
  10. Gerhardinger C, Lapolla A, Crepaldi G, Fedele D, Ghezzo E, Seraglia R, Traldi P (1990) Evidence of acid hydrolysis as responsible for 2-(2-furoyl)-4(5)-(2-furanyl)-1H-imidazole production. Clin Chim Acta 189: 335–340Google Scholar
  11. Grandhee SK, Monnier VM (1991) Mechanism of formation of the Maillard protein crosslink pentosidine. J Biol Chem 266: 11649–11653Google Scholar
  12. Hodge SE (1955) The Amadori rearrangement. Adv Carbohyd Chem 10: 169–205Google Scholar
  13. Irving CC, Gutmann HR (1959) Preparation and properties of N-α-acyl-lysine ester. J Org Chem 24: 1979–1982Google Scholar
  14. Kaiser H (1978) Foundations for the critical discussion of analytical methods. Spectrochim Acta Part B 33B: 551–576Google Scholar
  15. Karas H, Bachmann D, Hillenkamp F (1985) Influence of the wavelenght in high irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal Chem 57: 2935–2939Google Scholar
  16. Lapolla A, Poli T, Gerhardinger C, Fedele D, Crepaldi G, Chiarello D, Ghezzo E, Traldi P (1989) Parent ion spectroscopy in the identification of advanced glycation products. Biomed Environ Mass Spectrom 18: 713–718Google Scholar
  17. Lapolla A, Gerhardinger C, Pelli B, Sturaro A, Del Favero E, Traldi P, Crepaldi G, Fedele D (1990a) Absence of brown product FFI in non diabetic and diabetic rat collagen. Diabetes 39: 57–61Google Scholar
  18. Lapolla A, Gerhardinger C, Ghezzo E, Seraglia R, Sturaro A, Crepaldi G, Fedele D, Traldi P (1990b) Identification of furoyl containing advanced glycation products in collagen samples from diabetic and healthy rats. Biochem Biophys Acta 1033: 13–18Google Scholar
  19. Lapolla A, Gerhardinger C, Baldo L, Crepaldi G, Fedele D, Porter CJ, Seraglia R, Favretto D, Traldi P (1991a) Investigation of products arising from enzymatic digestion of advanced glycated albumin by high-performance liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom 5: 624–628Google Scholar
  20. Lapolla A, Gerhardinger C, Crepaldi G, Fedele D, Palumbo M, Dal Zoppo D, Porter CJ, Ghezzo E, Seraglia R, Traldi P (1991b) Mass spectrometric approaches in structural identification of the reaction products arising from the interaction between glucose and lysine. Talanta 38: 405–412Google Scholar
  21. Lapolla A, Gerhardinger C, Baldo L, Fedele D, Favretto D, Seraglia R, Traldi P (1992a) Pyrolysis/gas chromatography mass spectrometry in the analysis of glycated poly-L-lysine. Org Mass Spectrom 27: 183–187Google Scholar
  22. Lapolla A, Gerhardinger C, Baldo L, Crepaldi G, Fedele D, Favretto D, Seraglia R, Curcuruto O, Traldi P (1992b) Pyrolysis-gas chromatography mass spectrometry in the characterization of glycated albumin. J Anal Appl Pyrolysis 24: 87–103Google Scholar
  23. Lapolla A, Gerhardinger C, Baldo L, Fedele D, Keane A, Seraglia R, Catinella S, Traldi P (Submitted) A study on in vitro glycation processes by matrix assisted laser desorption ionization mass spectrometry. Biochem Biophis ActaGoogle Scholar
  24. Lapolla A, Gerhardinger C, Baldo L, Fedele D, Bertani R, Facchin G, Rizzi E, Catinella S, Seraglia R, Traldi P (Submitted) The lysine glycation. 1. A preliminary investigation on the products arising from the reaction of protected lysine and D-glucose. Amino AcidsGoogle Scholar
  25. Ledl F, Fritsch G, Hiebel J, Parchmayr O, Severin T (1986) In: Fujimaky M, Namiki M, Kato H (eds) Amino-carbonyl reactions in food and biological systems. Elsevier, Amsterdam, pp 173–182Google Scholar
  26. Ledl F (1990) Chemical pathways in the Maillard reaction. In: Finot PA, Aeschbacher HU, Hurrel RF, Liarden E (eds) The Maillard reaction in food processing, human nutrition and physiology. Birkhäuser, Basel, pp 19–42Google Scholar
  27. Lyons TS, Silvestri G, Dunn JA, Dyer DG, Baynes JW (1991) Role of glycation in modification of lens crystallins in diabetic and non diabetic senile cataracts. Diabetes 40: 1010–1015Google Scholar
  28. Lubec G, Pollak A (1980) Reduced susceptibility of non enzymatic glucosylated glomerular membrane to protease: is thickening of diabetic glomerular basement membranes due to reduced proteolytic degradation? Renal Physiol 3: 4–8Google Scholar
  29. Maillard LC (1912) Action des acid amines sur les sucres; formation des melanoidines par voie methodique. C R Acad Sci 154: 66–68Google Scholar
  30. Maillard LC (1916) Synthèse des materies huniques par action des acid aminés sur le sucres reducteurs. Ann Chim Sèr 9: 258Google Scholar
  31. Makita Z, Radolf S, Rayfield EJ, Yang Z, Skolnik E, Delany V, Friedman EA, Cerami A, Vlassara H (1991) Advanced glycosylation end products in patients with diabetic nephropathy. N Engl J Med 325: 836–842Google Scholar
  32. Makita Z, Vlassara H, Cerami A, Bucala R (1992) Immunochemical detection of advanced glycosylation end products in vivo. J Biol Chem 267, 8: 5133–5138Google Scholar
  33. Miyata S, Monnier VM (1992) Immunocytochemical detection of advanced glycosylation end products in diabetic tissues using monoclonal antibody to pyrraline. J Clin Invest 89: 1102–1112Google Scholar
  34. Monnier VM, Cerami A (1981) The research for non enzymatic browning products. Invest Opthalmol Vis Sci 20: 169–174Google Scholar
  35. Monnier VM, Cerami A (1982) Non enzymatic glycosylation and browning of proteins in diabetes. Clin Endocrinol Metab 11: 431–452Google Scholar
  36. Monnier VM, Cerami A (1983) Non-enzymatic glycosylation and browning of proteins in vivo. In: Waller GR, Feather F (eds) The Maillard reaction in foods and nutrition. Am Chem Soc Symp Series 215, Washington DC (The Am Chem Soc pp. 413–419)Google Scholar
  37. Njoroge FG, Sayre LM, Monnier VM (1987) Detection of D-glucose-derived pyrrole compounds during Maillard reaction under physiological conditions. Carbohydr Res 167: 211–220Google Scholar
  38. Njoroge FG, Fernandes AA, Monnier VM (1988) Mechanism of formation of putative advanced glycosylation end product and protein cross-link 2-(2-furoyl)-4(5)-(2-furanyl)-1H-imidazole. J Biol Chem 263: 10646–10652Google Scholar
  39. Odetti PR, Borboglio A, De Pascale A, Rolandi R, Adezati R (1990) Prevention of diabetesincreased aging effect on rat collagen-linked fluorescence by aminoguanidine and rutin. Diabetes 39: 796–801Google Scholar
  40. Olsson K, Pernemalm PA, Popoff T, Teander O (1977) Formation of aromatic compounds from carbohydrates. Acta Chem Scand B31: 469–474Google Scholar
  41. Patel NJ, Misra VP, Dandone P, Thomas PK (1991) The effect of non enzymatic glycation of serum proteins on their permeation into peripheral nerve in normal and streptozotocin-diabetic rats. Diabetologia 34: 78–80Google Scholar
  42. Paulsen H, Pflughaupt KW (1980) Glycosylamines. In: Pigman W, Horton D (eds) Carbohydrates. Academic Press, New York, pp 881–926Google Scholar
  43. Pelli B, Sturaro A, Traldi P, Lapolla A, Poli T, Fedele D, Crepaldi G (1986) Collisional spectroscopy as a screening procedure for the determination of 2-(2-furoyl)-4(5)-(2-furanyl)-1H-imidazole from acid hydrolysis ofβ-poly (L-lysine) andβ-albumin. Biomed Environ Mass Spectrom 13: 7–11Google Scholar
  44. Pongor S, Ulrich PC, Bencsath FA, Cerami A (1984) Aging of proteins: isolation and identification of a fluorescent chromophore from the reaction of polypeptides with glucose. Proc Natl Acad Sci USA 81: 2684–2688Google Scholar
  45. Reynolds TM (1963) Chemistry of non-enzymatic browning. Adv Food Res 12: 1–52Google Scholar
  46. Reynolds TM (1965) Chemistry of non-enzymatic browning II. Adv Food Res 14: 167–283Google Scholar
  47. Ruderman NB, Williamson JR, Brownlee M (1992) Glucose and diabetic vascular disease. FASEB J 6: 2905–2974Google Scholar
  48. Schleicher E, Wieland OH (1981) Specific quantitation by HPLC of protein (lysine) bound glucose in human serum albumin and other glycosylated proteins. J Clin Chem Clin Biochem 19: 81–87Google Scholar
  49. Sell DR, Monnier VM (1989) Structure elucidation of a senescence crosslink from human extracellular matrix. J Biol Chem 264: 21597–21602Google Scholar
  50. Sell DR, Nagaray RH, Grandhee SK, Odetti P, Lapolla A, Fogarty J, Monnier VM (1991) Pentosidine: a molecular marker for the cumulative damage to proteins in diabetes, aging, and uremia. Diabetes Metab Rev 7 4: 239–251Google Scholar
  51. Sell DR, Lapolla A, Odetti P, Fogarty J, Monnier VM (1992) Pentosidine formation in skin correlates with severity of complications in individuals with long-standing IDDM. Diabetes 41: 1286–1292Google Scholar
  52. Sengl M (1988) Identifizierung niedermolekularer, polaler Zuckerumwandlungsprodukte sowie Nachweis eines proteingebundenen Produkts aus der Spätphase der Maillard-Reaction. Dissertation University of MunicGoogle Scholar
  53. Smith RD, Loo JA, Edmonds GC, Barinaga CJ, Udset HR (1990) New developments in biochemical mass spectrometry: electrospray ionization. Anal Chem 68: 822–899Google Scholar
  54. Snyder AP, Kremer JH, Meuzelaar HL, Winding W (1988) Curie point pyrolysis atmospheric pressure chemical ionization mass spectrometry as a probe on the effect of sodium chloride on biopolymers. J Anal Appl Pyrrol 13: 77–88Google Scholar
  55. Tanaka S, Avigad G, Brodsky B, Enkenberry EF (1988) Glycation induces expansion of the molecular packing of collagen. J Mol Biol 203: 495–505Google Scholar
  56. Tsilbary EC, Cheronis AS, Reger LA, Wohlhneter RM, Furcht LT (1988) The effect of non enzymatic glucosylation on the binding of the main non collagenous NC1 domain to type IV collagen. J Biol Chem 263: 4302–4308Google Scholar
  57. Yost RA (1983) MS/MS Tandem mass spectrometry. Spectra 4: 2–6Google Scholar
  58. Vlassara H, Brownlee M, Cerami A (1984) Accumulation of diabetic rats peripheral nerve myelin by macrophage increases with extent and duration of non enzymatic glycosylation. Proc Natl Acad Sci USA 160: 197–207Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • A. Lapolla
    • 1
  • D. Fedele
    • 1
  • P. Traldi
    • 2
  1. 1.Istituto di Medicina Interna - Patologia MedicaPadovaItaly
  2. 2.CNR Area di RicercaPadovaItaly

Personalised recommendations