Advertisement

Amino Acids

, Volume 6, Issue 1, pp 1–13 | Cite as

Distribution and biological activity ofβ-thymosins

  • M. Mihelić
  • W. Voelter
Review Article

Summary

β-Thymosins, a group of highly homologous peptides consisting of about 40 amino acid residues, were found to be distributed from mammals up to echinoderms. Althogh they have first been isolated from mammalian thymus tissue preparations, their occurrance is not organ-specific and they are present even in different types of cells. For thymosinβ4 several biological activities have been reported, stating that this peptide acts as a thymus peptide hormone and is also involved in the neuroendocrine and immune system. However, it was recently demonstrated that thymosinβ4 has actin-sequestering properties and therefore might play an important role in the regulation of the microfilament system. This fact gives a new outlook on the real biological function ofβ-thymosins.

Keywords

Amino acids β-Thymosins Phylogenetic distribution Actin sequestration Immunoassays Immunohistochemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abiko T, Sekino H (1982) Synthesis of the hentetracontapeptide corresponding to the entire amino acid sequence of calf thymosinβ 9 and its effect on lowe-rosette-forming cells of a patient with lupus nephritis. J Appl Biochem 4: 449–458Google Scholar
  2. Abiko T, Sekino H (1989) Synthesis of a thymosinβ 4-like peptide, deacetyl-thymosinβ 4 Xen, and its restorative effect on depressed lymphocyte blastogenic response to phytohemagglutinin (PHA) in uremic patients. Chem Pharm Bull 37/9: 2467–2471Google Scholar
  3. Abiko T, Sekino H (1990) Synthesis of a thymosinβ 4-like peptide, thymosinβ 9 Met, and its effect on lowe-rosette-forming capacity of lupus nephritis patients. Chem Pharm Bull 38/8: 2301–2304Google Scholar
  4. Cassimeris L, Safer D, Nachmias VT, Zigmond SH (1992) Thymosinβ 4 sequesters the majority of G-actin in resting human polymorphonuclear leukocytes. J Cell Biol 119/5: 1261–1270Google Scholar
  5. Chandramouli N, Bhagarva KK, Incefy GS, Modak MJ, Merrifield RB (1986) Solid phase synthesis of thymosinβ 9. Int J Peptide Protein Res 28: 536–541Google Scholar
  6. Echner H, Yialouris P, Haritos AA, Grübler G, Voelter W (1993) Structures and syntheses of thymosinβ 11 andβ 12. In: Schneider, CH, Eberle AN (eds) Peptides 1992. Escom Science Publishers BV, Leiden, pp 751–752Google Scholar
  7. Erickson-Viitanen S, Ruggieri S, Natalini P, Horecker BL (1983a) Distribution of thymosinβ 4 in vertebrate classes. Arch Biochem Biophys 221/2: 570–576Google Scholar
  8. Erickson-Viitanen S, Ruggieri S, Natalini P, Horecker BL (1983b) Thymosinβ 10, a new analog of thymosinβ 4 in mammalian tissues. Arch Biochem Biophys 225/2: 407–413Google Scholar
  9. Freund J, Kapurniotu A, Holak TA, Lenfant M, Voelter W (1992) Synthesis and two-dimensional1H and13C NMR investigations of an inhibitor of hematopoietic stem cell proliferation Ac-Ser-Asp-Lys-Pro-OH. Z Naturforsch 47b: 1324–1332Google Scholar
  10. Galoyan AA, Gurvitis BY, Shuvalova LA, Davis MT, Shively JE, Lee TD (1992) A hypothalamic activator of calmodulin-dependent enzymes is thymosinβ 4(1–39). Neurochem Res 17/8: 773–777Google Scholar
  11. Gallert B, Zarbock J, Voelter W, Holak TA (1993) A nuclear magnetic resonance and simulated annealing study of thymosinβ 9 in solution. In: Schneider CH, Eberle AN (eds) Peptides 1992. Escom Science Publishers BV, Leiden, pp 517–518Google Scholar
  12. Goldschmidt-Clermont P, Furman MI, Wachsstock D, Safer D, Nachmias VT, Pollard T (1992) The control of actin nucleotide exchange by thymosinβ 4 and profilin. A potential regulatory mechanism for actin polymerization in cells. Mol Biol Cell 3: 1015–1024Google Scholar
  13. Gomez-Marquez J, Dosil M, Segade F, Bustelo XR, Pichel JG, Dominguez F, Freire M (1989) Thymosinβ 4 gene. Preliminary characterization and expression in tissues, thymic cells and lymphocytes. J Immunol 143/8: 2740–2744Google Scholar
  14. Gondo H, Kudo J, White JW, Barr C, Selvanayagam P, Saunders GF (1987) Differential expression of the human thymosinβ 4 gene in lymphocytes, macrophages and granulocytes. J Immunol 139/11: 3840–3848Google Scholar
  15. Goodall GJ, Morgan JI, Horecker BL (1983a) Thymosinβ 4 in cultured mammalian cell lines. Arch Biochem Biophys 221/2: 598–601Google Scholar
  16. Goodall GJ, Hempstead JL, Morgan J (1983b) Production and characterization of antibodies to thymosinβ 4. J Immunol 131/2: 821–825Google Scholar
  17. Goodall GJ, Horecker BL (1987) Molecular cloning of the cDNA for rat spleen thymosinβ 10 and the deduced amino acid sequence. Arch Biochem Biophys 256/1: 402–406Google Scholar
  18. Grillon C, Rieger K, Bakala J, Schott D, Morgat J-L, Hannappel E, Voelter W, Lenfant M (1990) Involvement of thymosinβ 4 and endoproteinase Asp-N in the biosynthesis of the tetrapeptide AcSerAspLysPro, a regulator of the hematopoietic system. FEBS Lett 274/1, 2: 30–34Google Scholar
  19. Hall AK (1991) Developmental regulation of thymosinβ 10 mRNA in the human brain. Mol Brain Res 9: 175–177Google Scholar
  20. Hall AK, Hempstead J, Morgan JI (1990) Thymosinβ 10 levels in developing human brain and its regulation by retinoic acid in the HTB-10 neuroblastoma. Mol Brain Res 8: 129–135Google Scholar
  21. Hannappel E (1986) One-step procedure for the determination of thymosinβ 4 in small tissue samples and its separation from other thymosinβ 4-like peptides by high pressure liquid chromatography. Anal Biochem 156: 390–396Google Scholar
  22. Hannappel E (1987) Thymosinβ 4 undβ 4-artige Peptide. In: ED Hager (ed) Thymusfaktoren, Thymuspräparate. G. Fischer, Stuttgart New York, pp 64–73Google Scholar
  23. Hannappel E, van Kampen M (1987) Determination of thymosinβ 4 in human blood cells and serum. J Chromatography 397: 285–297Google Scholar
  24. Hannappel E, Leibold W (1985) Biosynthesis rates and content of thymosinβ 4 in cell lines. Arch Biochem Biophys 240/1: 236–241Google Scholar
  25. Hannappel E, Wartenberg F (1993) Actin-sequestering ability of thymosinβ 4, thymosinβ 4 fragments, and thymosinβ 4-like peptides as assessed by the DNase I inhibition assay. Biol Chem Hoppe-Seyler 374: 117–122Google Scholar
  26. Hannappel E, Davoust S, Horecker BL (1982) Isolation of peptides from calf thymus. Biochem Biophys Res Commun 104/1: 266–271Google Scholar
  27. Hannappel E, Kalbacher H, Voelter W (1988) Thymosinβ 4 Xen: a new thymosinβ 4-like peptide in oocytes of Xenopus laevis. Arch Biochem Biophys 260/2: 546–551Google Scholar
  28. Hannappel E, Wartenberg F, Bustelo XR (1989) Isolation and characterisation of thymosinβ 9 Met from pork spleen. Arch Biochem Biophys 273/2: 396–402Google Scholar
  29. Haritos AA, Caldarella J, Horecker BL (1985) Simultaneous isolation and determination of prothymosinα, parathymosinα thymosinβ 4 and thymosinβ 10. Anal Biochem 144: 436–440Google Scholar
  30. Heintz D, Reichert A, Mihelic M, Voelter W, Faulstich H (1993) Use of bimanyl actin derivative (TMB-actin) for studying complexation ofβ-thymosins. Inhibition of actin polymerization by thymosinβ 9. FEBS Lett 329/1, 2: 9–12Google Scholar
  31. Horecker BL, Morgan J (1984) Ubiquitous distribution of thymosin beta-4 and related peptides in vertebrate cells and tissues. Lymphokines 9: 15–35Google Scholar
  32. Hörger S (1993) PhD Thesis, Abteilung für physikalische Biochemie, Tübingen UniversityGoogle Scholar
  33. Hörger S, Gallert B, Echner H, Voelter W (1992) Synthese eines Thymosinβ 10-Fragments zur Entwicklung spezifischer Antikörper. Z Naturforsch 47b: 1170–1174Google Scholar
  34. Hörger S, Gallert B, Kellermann J, Voelter W (1993) Isolation and structural identification ofβ-thymosins from equine tissue; development of a specific ELISA against thymosinβ 10 (Tβ 10). In: Schneider CH, Eberle AN (eds) Peptides 1992. Escom Science Publishers BV, Leiden, pp 749–750Google Scholar
  35. Jameson BA, Wolf H (1988) The antigenic index: a novel algorithm for predicting antigenic determinants. Cabios 4: 181–186Google Scholar
  36. Kalbacher H, Hannappel E, Mihelić M, Voelter W (1988) High yield isolation method of natural thymus peptides; their synthesis and biological activities. Proc 2nd Akabori Conf Res Found, Minoh-Shi, Osaka, p 80Google Scholar
  37. Kalbacher H, Jahan M, Mihelić M, Zaman F, Voelter W (1990) Solution synthesis of a biologically active fragment [33–41] of thymosinβ 9. Liebigs Ann Chem 1990: 249–252Google Scholar
  38. Kapurniotu A, Voelter W (1991) Klassische Synthese des Fragments [11–19] von Thymosinβ 4. Liebigs Ann Chem 1991: 1251–1257Google Scholar
  39. Kapurniotu A, Voelter W (1992) Klassische Synthese des Fragments [20–30] von Thymosinβ 4. Liebigs Ann Chem 1992: 361–370Google Scholar
  40. Kapurniotu A, Link P, Voelter W (1993) Total synthesis of thymosinβ 4 by fragment condensation. Liebigs Annal Chem (in press)Google Scholar
  41. Kauppinen RA, Nissinen T, Karkkainen A-M, Pirttila TRM, Palvimo J, Kokko H, Williams SR (1992) Detection of thymosinβ 4 in situ in a guinea pig cerebral cortex preparations using1H NMR spectroscopy. J Biol Chem 267/14: 9905–9910Google Scholar
  42. Kokkinopoulos D, Perez S, Papamichail M (1985) Thymosinβ 4 induced phenotypic changes in molt-4 leukemic cell line. Blut 50: 341–348Google Scholar
  43. Lenfant M, Wdzieczak-Bakala J, Guittet E, Prome J-C, Sotty D, Frindel E (1989) Inhibitor of hematopoietic pluripotent stem cell proliferatio: purification and determination of its structure. Proc Natl Acad Sci USA 86: 779–782Google Scholar
  44. Lin S-C, Morrison-Bogorad M (1991) Cloning and characterization of a testis-specific thymosinβ 10 cDNA. J Biol Chem 266/35: 23347–23353Google Scholar
  45. Livaniou E, Mihelić M, Voelter W (1991) Development of specific antibodies for thymosinβ 4. In: Giralt E, Andreu D (eds) Peptides 1990. Escom Science Publishers BV, Leiden, pp 210–211Google Scholar
  46. Livaniou E, Mihelić M, Evangelatos G, Haritos AA, Voelter W (1992) A thymosinβ 4 ELISA using an antibody against the N-terminal fragment thymosinβ 4[1–14]. J Immunol Methods 148/1–2: 9–14Google Scholar
  47. Low TLK, Hu S-K, Goldstein AL (1981) Complete amino acid sequence of bovine thymosinβ 4: A thymic hormone that induces terminal desoxynucleotidyl transferase activity in thymocyte populations. Proc Natl Acad Sci USA 78: 1162–1166Google Scholar
  48. Low TLK, Wang S-S, Goldstein AL (1983) Solid-phase synthesis of thymosinβ 4: chemical and biological characterization of the synthetic peptide. Biochemistry 22: 733–740Google Scholar
  49. Low TLK, Lin C-Y, Pan T-L, Chiou A-J, Tsugita A (1990) Structure and immunological properties of thymosinβ 9 Met, a new analog of thymosinβ 4 isolated from porcine thymus. Int J Peptide Protein Res 36: 481–488Google Scholar
  50. Low TLK, Liu DT, Jou J (1992) Primary structure of thymosinβ 12, a new member of theβ-thymosin family isolated from perch liver. Arch Biochem Biophys 293/1: 32–39Google Scholar
  51. McCreary V, Kartha S, Bell GI, Toback PG (1988) Sequence of a human kidney cDNA clone encoding thymosinβ 10. Biochem Biophys Res Comm 152/2: 862–866Google Scholar
  52. Mihelić M, Voelter W (1993) Immunohistochemical localization of thymosinβ 4 with antibodies raised from a synthetic fragment with high antigenicity. In: Schneider CH, Eberle AN (eds) Peptides 1992. Escom Science Publishers BV, Leiden, pp 905–906Google Scholar
  53. Mihelić M, Hannappel E, Kalbacher H, Voelter W (1988) Generation of specific antibodies against thymosinβ 4-like peptides by immunization with N-terminal fragments. In: Jung G, Bayer E (eds) Peptides 1988. Walter de Gruyter, Berlin New York, pp 739–741Google Scholar
  54. Mihelić M, Kalbacher H, Hannappel E, Voelter W (1989) MicroElisa method for the determination of thymosinβ 9 discriminating between thymosinβ 9 and the structurally closely related thymosinβ 4. J Immunol Methods 122/2: 7–13Google Scholar
  55. Mihelić M, Giebel W, Kalbacher H, Hannappel E, Voelter W (1990) Localization of thymosinβ 9 in bovine tissues. Histochemistry 95/2: 175–178Google Scholar
  56. Mihelić M, Livaniou E, Hörger S, Galic M, Giebel W, Lenfant M, Voelter W (1992) Antibodies against thymosinβ 4—their specificity and use in immunohistochemical studies. In: Wegmann RJ, Wegmann MA (eds) Recent advances in cellular and molecular biology, vol. 1. Thymic immune regulations, autoantibodies, lymphomas, infectious diseases, tumors. Peeters Press, Leuven, pp 43–47Google Scholar
  57. Mihelić M, Huguet M, Voelter W (1993) Development of specific immunoassays forβ-thymosins. In: Brandenburg D, Ivanov V, Voelter W (eds) Chemistry of peptides and proteins. Verlag Mainz, Aachen, pp 883–891Google Scholar
  58. Nachmias VT, Golla R, Safer D, Weber A, Cassimeris L, Zigmond (1991) Reciprocal changes in thymosin beta-4-platelet actin complex (Tβ 4-PA) and F-actin in stimulated platelets. J Cell Biol 115: 374aGoogle Scholar
  59. Naylor PH, McClure JE, Spangelo BL, Low TLK, Goldstein AL (1984) Immunochemical studies on thymosin: radioimmunoassay of thymosinβ 4. Immunopharmacology 7: 9–16Google Scholar
  60. Naylor PH, Friedman-Kien A, Hersh E, Erdos M, Goldstein AL (1986) Thymosinα 1 and thymosinβ 4 in serum: comparison of normal, cord, homosexual and AIDS serum. Int J Immunopharmacol 8/7: 667–676Google Scholar
  61. Otero A, Bustelo XR, Pichel J, Freire M, Gomez-Marquez J (1993) Transcript levels of thymosinβ 4, an actin-sequestering peptide, in cell proliferation. Biochem Biophys Acta 1176: 59–63Google Scholar
  62. Pradelles P, Frobert Y, Crémion C, Liozon E, Massé A, Frindel E (1990) Negative regulator of pluripotent hematopoietic stem cell proliferation in human white blood cells and plasma as analysed by enzyme immunoassay. Biochem Biophys Res Comm 170/3: 986–993Google Scholar
  63. Pradelles P, Frobert Y, Crémion C, Ivonine H, Frindel E (1991) Distribution of a negative regulator of hematopoietic stem cell proliferation (AcSDKP) and thymosinβ 4 in mouse tissues. FEBS Lett 289/2: 171–175Google Scholar
  64. Rebar RW, Miyake A (1981) Thymosin stimulates secretion of luteinizing hormone-releasing factor. Science 214: 669–671Google Scholar
  65. Safer D, Elzinga M, Nachmias VT (1991) Thymosinβ 4 and Fx, an actin-sequestering peptide, are indistiguishable. J Biol Chem 266/7: 4029–4032Google Scholar
  66. Sanders MC, Goldstein AL, Wang Y-L (1992) Thymosinβ 4 (Fx peptide) is a potent regulator of actin polymerization in living cells. Proc Natl Acad Sci USA 89: 4678–4682Google Scholar
  67. Schöbitz B, Netzker R, Hannappel E, Brand K (1990) Rapid induction of thymosinβ 4 in concanavalina-stimulated thymocytes by translational control. J Biol Chem 265/26: 15387–15391Google Scholar
  68. Schöbitz B, Netzker R, Hannappel E, Brand K (1991) Cell-cycle-regulated expression of thymosinβ 4 in thymocytes. Eur J Biochem 199: 257–262Google Scholar
  69. Sippl M, Hendlich M, Lackner P (1992) Assembly of polypeptide and protein backbone conformations from low energy ensembles of short fragments: development of strategies and construction of models for myoglobin, lysozyme, and thymosinβ 4. Prot Science 1: 625–640Google Scholar
  70. Thierry J, Papet M-P, Saez-Servent N, Plissonneau-Haumont J, Potier P, Lenfant M (1990) Synthesis and activity of NAcSerAspLysPro analogues on cellular interactions between T-cell and erythrocytes in rosette formation. J Med Chem 33: 2122–2127Google Scholar
  71. Thurman GB, Low TLK, Rossio J, Goldstein AL (1981) Specific and nonspecific macrophage migration inhibition. In: Goldstein AL, Chirigos MA (eds) Lymphokines and thymic hormones: their potential utilization in cancer therapeutics. Raven Press, New York, pp 145–157Google Scholar
  72. Thurman GB, Seals C, Low TLK, Goldstein AL (1984) Restorative effects of thymosin polypeptides on purified protein derivative-dependent migration inhibition factor production by the peripheral blood lympllocytes of adult thymectomized guinea pigs. J Biol Resp Modif 3: 160–173Google Scholar
  73. Tsitsiloni O, Yialouris PP, Echner H, Voelter W, Haritos AA (1992) Evidence for the extranuclear localization of thymosins. Experientia 48: 398–403Google Scholar
  74. Tzechoval E, Sztein MB, Goldstein AL (1989) Immunopharmacology 18: 107Google Scholar
  75. Vancompernolle K, Goethals, Huet C, Louvard D, Vandekerckhove J (1992) G- to F-actin modulation by a single amino acid substitution in the actin binding site of actobindin and thymosinβ 4. EMBO J 11/13: 4739–4746Google Scholar
  76. Voelter W, Kapurniotu A (1991) Strategies for the total syntheses of thymosins. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 8. Elsevier Science Publishers BV, Amsterdam, pp 433–461Google Scholar
  77. Voelter W, Mihelić M, Livaniou E (1990a)β-thymosin fragments, their biological activity and use for the development of specific antibodies. In: Zaidi ZH, Abbasi A, Smith DL (eds) Protein-structure-function. Twel Publishers, Karachi London New York, pp 183–197Google Scholar
  78. Voelter W, Livaniou E, Mihelic M (1990b) Development of specific immunoassays for thymosins. In: Tschesche (ed) Modern methods in protein- and nucleic acid research. Walter de Gruyter, Berlin New York, pp 251–269Google Scholar
  79. Voelter W, Kalbacher H, Echner H, Schmid B, Schröder C, Treffer U (1991) Isolation of a new thymosin from trout spleen and the automatic solid phase synthesis of its proposed sequence. In: Giralt E, Andreu D (eds) Peptides 1990. Escom Science Publishers BV, Leiden, pp 210–211Google Scholar
  80. Voelter W, Armbruster FP, Kapurniotu A, Livaniou E, Mihelić M, Perrei C (1992a) Theoretical and experimental epitope mapping of thymosinβ 4. In: Smith JA, Rivier JE (eds) Peptides: chemistry and biology. Escom Science Publishers BV, Leiden, pp 895–896Google Scholar
  81. Voelter W, Mihelić M, Kapurniotu A (1992b) New aspects ofβ-thymosins. In: Proceedings of the 4th Akabori Conference, Japanese-German Symposium on Peptide Chemistry, Protein Research Foundation, Minoh-Shi, Osaka, Japan, pp 185–188Google Scholar
  82. Voelter W (1993a) New outlooks in thymosin research. In: Schneider CH, Eberle AN (eds) Peptides 1992. Escom Science Publishers BV, Leideni, pp 103–104Google Scholar
  83. Voelter W (1993b) The biological relevance of thymosins in the animal kingdom. In: Yaneihara N (ed) Peptide chemistry 1992. Escom Science Publishers BV, Leiden, pp 632–636Google Scholar
  84. Wang SS, Wang BSH, Chang JK, Low TLK, Goldstein AL (1981) Synthesis of thymosinβ 4. Int J Peptide Protein Res 18: 413–415Google Scholar
  85. Weber A, Nachmias VT, Pennise CR, Pring M, Safer D (1992) Interaction of thymosinβ 4 with muscle and platelet actin: implications for actin sequestration in resting platelets. Biochemistry 31: 6179–6185Google Scholar
  86. Weller FE, Mutchnick MG (1987) Enzyme immunoassay measurement of thymosinβ 4. J Immunoassay 8/2–3: 203–217Google Scholar
  87. Weller FE, Mutchnick MG, Goldstein AL, Naylor PH (1988) Enzyme immunoassay measurement of thymosinβ 4 in human serum. J Biol Resp Mod 7: 91–96Google Scholar
  88. Weller FE, Shah U, Cummings G, Chretien P, Mutchnick MG (1992) Serum levels of immunoreactive thymosinα 1 and thymosinβ 4 in large cohorts of healthy adults. Thymus 19: 45–52Google Scholar
  89. Wodnar-Filipowicz A, Horecker BL (1983) In vitro synthesis of thymosinβ 4 encoded by rat spleen mRNA. Proc Natl Acad Sci USA 80: 1811–1815Google Scholar
  90. Wodnar-Filipowicz A, Gubler U, Furuichi Y, Richardson M, Nowoswiat E, Poonian MS, Horecker BL (1984) Cloning and sequence analysis of cDNA for rat spleen thymosinβ 4. Proc Natl Acad Sci USA 81: 2295–2297Google Scholar
  91. Xu G-J, Hannappel E, Morgan J, Hempstead J, Horecker BL (1982) Synthesis of thymosinβ 4 by peritoneal macrophages and adherent spleen cells. Proc Natl Acad Sci USA 79: 4006–4009Google Scholar
  92. Yialouris P, Coles B, Tsitsiloni O, Schmid B, Howell S, Aitken A, Voelter W, Haritos AA (1992) The complete sequences of trout (Salmo gairdneri) thymosinβ 11 and its homologue thymosinβ 12. Biochem J 283: 385–389Google Scholar
  93. Yu F-X, Lin S-C, Morrison-Bogorad, Atkinson MAL Yin H (1993) Thymosinβ 10 and thymosinβ 4 are both actin monomer sequestering proteins. J Biol Chem 268/1: 502–509Google Scholar
  94. Zarbock J, Oschkinat H, Hannappel E, Kalbacher H, Voelter W, Holak TA (1990) Solution conformation of thymosinβ 4: a nuclear magnetic resonance and simulated annealing study. Biochemistry 29: 7814–7821Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • M. Mihelić
    • 1
  • W. Voelter
    • 1
  1. 1.Abteilung für Physikalische Biochemie des Physiologisch-chemischen InstitutsUniversität TübingenTübingenFederal Republic of Germany

Personalised recommendations