Skip to main content
Log in

Interorgan metabolism of valine

  • Published:
Amino Acids Aims and scope Submit manuscript

Summary

Oxidation of branched-chain amino acids, leucine, isoleucine and valine, is thought to occur primarily in muscle. Theoretically, however, it is possible for valine carbon to be converted to glucose, a process which only occurs in liver and kidney. We provide evidence that valine is oxidixed toβ-hydroxyisobutyrate in muscle, and that this intermediate is released from muscle and taken up by liver and kidney for subsequent conversion to glucose, thus conserving the gluconeogenic potential of valine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bloxam DL (1972) Br J Nutr 27: 233–247

    Google Scholar 

  2. Krebs HA, Lund P (1977) Adv Enzyme Reg 15: 375–394

    Google Scholar 

  3. Taylor RT, Jenkins WT (1966) J Biol Chem 241: 4396–4405

    Google Scholar 

  4. Pettit FH, Yeaman SJ, Reed LJ (1978) Proc Natl Acad Sci USA 75: 4881–4885

    Google Scholar 

  5. Ikeda Y, Dabrowski C, Tanaka K (1983) J Biol Chem 258: 1066–1076

    Google Scholar 

  6. Robinson WG, Nagle R, Bachhawat BK, Kupiecki FP, Coon MJ (1957) J Biol Chem 224: 1–11

    Google Scholar 

  7. Rendina G, Coon MJ (1957) J Biol Chem 225: 523–534

    Google Scholar 

  8. Robinson WG, Coon MJ (1957) J Biol Chem 225: 511–521

    Google Scholar 

  9. Goodwin GW, Rougraff PM, Davis EJ, Harris RA (1988) J Biol Chem 264: 14965–14971

    Google Scholar 

  10. Lau EP, Cochran BC, Munson L, Fall RR (1979) Proc Natl Acad Sci USA 76: 214–218

    Google Scholar 

  11. Mazumder R, Sasakawa T, Kaziro Y, Ochoa S (1962) J Biol Chem 237: 3065–3068

    Google Scholar 

  12. Cannata JJB, Focesi A Jr, Mazumder R, Warner RC, Ochoa S (1965) J Biol Chem 240: 3249–3257

    Google Scholar 

  13. Tanaka K, Rosenberg LE (1983) In: Stanbury JB, Wyngaarden JB, Fredrickson DS, Goldstein JL, Brown MS (eds) The metabolic basis of inherited disease. McGraw-Hill, New York, pp 440–473

    Google Scholar 

  14. Hutson SM, Harper AE (1981) Am J Clin Nutr 34: 173–183

    Google Scholar 

  15. Harris RA, Paxton R (1985) Fed Proc 44: 305–315

    Google Scholar 

  16. Buffington CK, DeBuysere MS, Olson MS (1979) J Biol Chem 254: 10453–10458

    Google Scholar 

  17. Spydevold O (1979) Eur J Biochem 97: 389–394

    Google Scholar 

  18. Letto J, Brosnan JT, Brosnan ME (1990) Biochem Cell Biol 68: 260–265

    Google Scholar 

  19. Kasperek GJ, Dohm GL, Snider RD (1985) Am J Physiol 248: R166-R171

    Google Scholar 

  20. Wohlt JE, Clark JH, Derrig RG, Davis CL (1977) J Dairy Sci 60: 1875–1882

    Google Scholar 

  21. Wagenmakers AJM, Salden HJM, Veerkamp JH (1985) Int J Biochem 17: 957–965

    Google Scholar 

  22. Rougraff PM, Paxton R, Kuntz MJ, Crabb DW, Harris RA (1988) J Biol Chem 263: 327–331

    Google Scholar 

  23. Randle PJ (1983) Phil Trans R Soc (Lond) B 302: 47–57

    Google Scholar 

  24. Letto J, Brosnan ME, Brosnan JT (1986) Biochem J 240: 909–912

    Google Scholar 

  25. Landaas S (1975) Clin Chim Acta 64: 143–154

    Google Scholar 

  26. Aftring RP, Manos PN, Buse MG (1985) Metabolism 34: 702–711

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by grants from the Medical Research Council of Canada and the Canadian Diabetes Association.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brosnan, M.E., Letto, J. Interorgan metabolism of valine. Amino Acids 1, 29–35 (1991). https://doi.org/10.1007/BF00808088

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00808088

Keywords

Navigation