Skip to main content
Log in

Peptide modification by incorporation ofα-trifluoromethyl substituted amino acids

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Summary

Metabolic stabilization of pharmacologically active peptides can be achieved by incorporation of sterically hindered non-natural amino acids, e.g. Cα,α-disubstituted amino acids.α-Trifluoromethyl substituted amino acids, a subclass of Cα,α-disubstituted amino acids, also fulfil this requirement while featuring additional properties based on the electronic influence of the fluorine substituents.

This review summarizes the results concerning the stability of peptides containingα-TFM amino acids towards proteolysis byα-chymotrypsin. Furthermore, configurational effects ofα-TFMAla on the proteolytic stability of peptides are explained using empirical force field calculations. The influence ofα-TFMAla incorporation on the secondary structure of selected tripeptide amides is compared to the effects exerted by its fluorine-free analogue, aminoisobutyric acid.

Finally, results on metabolic stabilization and biological activity of modified thyrotropin releasing hormone are interpreted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Altmann K-H, Altmann E, Mutter M (1992) Conformational studies on peptides containing enantiomericα-methylα-amino acids. Part I. Differential conformational properties of (R)- and (S)-2-methylaspartic acid. Helv Chim Acta 75: 1198–1210

    Google Scholar 

  • Bauer K, Carmelit P, Schulz M, Baes M, Denef C (1990) Regulation and cellular localization of the membrane-bound thyrotropin-releasing hormone-degrading enzyme in primary cultures of neuronal, glial and adenohypophyseal cells. Endocrinology 127: 1224–1233

    Google Scholar 

  • Bauer K, Nowak P, Kleinkauf H (1981) Specificity of a serum peptidase hydrolyzing thyroliberin at the pyroglutamyl-histidine bond. Eur J Biochem 118: 173–176

    Google Scholar 

  • Bindra VA, Kuki A (1994) Conformational preferences of oligopeptides rich inα-aminoisobutyric acid. III. Design, synthesis and hydrogen bonding in 310-helices. Int J Peptide Protein Res 44: 539–548

    Google Scholar 

  • Burger K, Mütze K, Hollweck W, Koksch B, Kuhl P, Jakubke H-D, Riede J, Schier A (1993) Untersuchungen zur proteasekatalysierten und chemischen Peptidbindungsknüpfung mitα-trifluormethylsubstituiertenα-Aminosäuren. J Prakt Chem 335: 321–331

    Google Scholar 

  • Dutler H, Bizzozero S (1989) Mechanism of the serine protease reaction. Stereoelectronic, structural, and kinetic considerations as guidelines to deduce reaction paths. Acc Chem Res 22: 322–327

    Google Scholar 

  • Fersht AR (1985) Enzyme structure and mechanism. Freemann, New York

    Google Scholar 

  • Gerisch S (1996) PhD Thesis, University Leipzig (in preparation)

  • Gillmor SA, Cohen FE (1993) New strategies for pharmaceutical design. Receptor 3: 155–163

    Google Scholar 

  • Grant G, Ling N, Rivier J, Vale W (1972) The hormones of the hypothalamus. Biochemistry 11: 3070

    Google Scholar 

  • Hölzemann G (1991) Peptide conformation mimetics (Part 1). Kontakte (Darmstadt) 1: 3–12

    Google Scholar 

  • Jakubke H-D (1994) Protease catalyzed peptide synthesis: Basic principles, new synthesis strategies and medium engineering. Chin Chem Soc 41: 355–370

    Google Scholar 

  • Koksch B (1995) Untersuchungen zum Einfluß vonα-TFM Aminosäure-Substitutionen auf Proteasestabilität und Konformation von Peptiden. PhD Thesis, University Leipzig

  • Koksch B, Sewald N, Hofmann H-J, Burger K, Jakubke H-D (1996a) Proteolytic stable peptides by incorporation ofα-TFM amino acids. J Peptide Science (submitted)

  • Koksch B, Ullmann D, Jakubke H-D, Burger K (1996b) Synthesis, structure and biological activity ofα-trifluoromethyl substituted thyreotropin releasing hormone. J Fluorine Chem (submitted)

  • Ladram A, Bulant M, Delfour A, Montagne JJ, Vaudry H, Nicolas P (1994) Modulation of the biological activity of thyrotropin-releasing hormone by alternate processing of pro-TRH. Biochimie 76: 320–328

    Google Scholar 

  • Matha V, Jegorov A, Kiess M, Brückner H (1992) Morphological alterations accompanying the effect of peptaibiotics,α-aminoisobutyric acid-rich secondary metabolites of filamentous fungi, onculex pipiens larvae. Tissue Cell 24: 559–564

    Google Scholar 

  • Miller SM, Simon RJ, Ng S, Zuckermann RN, Kerr JM, Moos WH (1994) Proteolytic studies of homologous peptide and N-substituted glycine peptoid oligomers. Bioorg Med Chem Lett 4: 2657–2662

    Google Scholar 

  • Rizo J, Gierasch LM (1992) Constrained peptides: models of bioactive peptides and protein substructures. Ann Rev Biochem 61: 387–418

    Google Scholar 

  • Schechter I, Berger A (1967) On the size of the active site in proteases. I. Papain. Biochem Biophys Res Comm 27: 157–162

    Google Scholar 

  • Schellenberger V, Schellenberger U, Mitin YV, Jakubke H-D (1990) Characterization of the S′-subsite specificity of bovine pancreaticα-chymotrypsin via acyl tranfer to added nucleophiles. Eur J Biochem 187: 163–167

    Google Scholar 

  • Seebach D (1990) Organic synthesis — Where next? Angew Chem Int Ed Engl 29: 1320–1367

    Google Scholar 

  • Sewald N, Burger K (1995) Synthesis ofβ-fluorine-containing amino acids. In: Kukhar VP, Soloshonok VA (eds) Fluorine-containing amino acids, synthesis and properties. J. Wiley & Sons, Chichester, pp 139–220 (and references cited therein)

    Google Scholar 

  • Toniolo C, Formaggio F, Crisma M, Bonora GM, Pegoraro S, Polinelli S, Boesten WHJ, Schoemaker HE, Broxterman QB, Kamphuis J (1991) Synthesis, characterization and solution conformational analysis of Cα-methyl-, Cα-benzylglycine [(αMe)Phe] model peptides. Peptide Research 5: 56–61

    Google Scholar 

  • Tulinsky A, Blevins RA (1987) Structure of a tetrahedral transition state complex of alpha-chymotrypsin at 1.8 Å resolution. J Biol Chem 262: 7737; BH, PDB file: 6cha.pdb

    Google Scholar 

  • Valle G, Crisma M, Toniolo C, Polinelli S, Boesten WHJ, Schoemaker HE, Meijer EM, Kamphuis J (1991) Peptides from chiral Cα,α-disubstituted glycines. Int J Peptide Protein Res 37: 521–527

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koksch, B., Sewald, N., Burger, K. et al. Peptide modification by incorporation ofα-trifluoromethyl substituted amino acids. Amino Acids 11, 425–434 (1996). https://doi.org/10.1007/BF00807946

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00807946

Keywords

Navigation