Skip to main content
Log in

Reverse action of hydrolases in frozen aqueous solutions

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Summary

The reverse action of hydrolases provides an attractive alternative to the chemical synthesis of peptides, oligosaccharides and oligonucleotides. Freezing the reaction mixture has proved to suppress competitive reactions in enzyme-catalysed peptide synthesis. After a short discussion of the influence of freezing on enzyme-catalysed reactions the current manuscript gives an overview of protease-catalysed peptide synthesis and the possible reasons of the yield-enhancing effect of freezing. The application of glycosidases and ribonucleases for synthetic purposes in frozen reaction mixtures is summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ac:

acetyl

Bz:

benzoyl

C>p:

cytidine 2′:3′-cyclic monophosphate

CpU:

cytidylyl (3′–5′)uridine

DTT:

dithioerythritol

Mal:

maleyl

NH2 :

amide

OBzl:

benzyl ester

OEt:

ethyl ester

OEt(Cl):

monochloroethyl ester

OMe:

methyl ester

pNA:

p-nitroanilide

Pht:

phthalyl

Z:

benzyloxycarbonyl

U:

uridine

References

  • Alburn HE, Grant NH (1965) Reactions in frozen systems. II. Enhanced hydroxylaminolysis of simple amides. J Am Chem Soc 87: 4174–4177

    Google Scholar 

  • Ajisaka K, Fujimoto H, Isomura M (1994) Regioselective transglycosylation in the synthesis of oligosaccharides: comparison ofβ-galactosidases and sialidases of various origins. Carbohydr Res 259: 103–115

    Google Scholar 

  • Attal S, Bay S, Cantacuzene D (1992) Enzymatic synthesis ofβ-galactosyldipeptides and ofβ-1,3-digalactosylserine derivatives usingβ-galactosidase. Tetrahedron 48: 9251–9260

    Google Scholar 

  • Backmann J, Doray CC, Grunert HP, Landt O, Hahn U (1994) Extended kinetic analysis of ribonuclease T1 variants leads to an improved scheme for the reaction mechanism. Biochem Biophys Res Commun 199: 213–219

    Google Scholar 

  • Bauer S, Lamed R, Lapidot Y (1972) Large scale synthesis of dinucleoside monophosphates catalysed by ribonuclease fromAspergillus clavatus. Biotechnol Bioengineer 14: 861–870

    Google Scholar 

  • Bongers J, Heimer EP (1994) Recent applications of enzymatic peptide synthesis. Peptides 15: 183–193

    Google Scholar 

  • Bratovanova EK, Kasche V, Petkov DD (1993) Kinetically controlled enzymic synthesis of ribonucleotide bond in vitro. Biotechnol Lett 15: 347–352

    Google Scholar 

  • Bruice TC, Butler AR (1964) Catalysis in water and ice. II. The reaction of thiolactons with morpholine in frozen systems. J Am Chem Soc 86: 4104–4108

    Google Scholar 

  • Cantacuzene D, Attal S (1991) Enzymic synthesis of galactopyranosyl-L-serine derivatives using galactosidases. Carbohydr Res 211: 327–331

    Google Scholar 

  • Dozou P (1971) Aqueous-organic solutions of enzymes at subzero temperatures. Biochimie 53: 1135–1145

    Google Scholar 

  • Eigen M, de Mayer L (1958) Self-dissociation and protonic charge transport in water and ice. Proc Roy Soc (London) A247: 505–533

    Google Scholar 

  • Fennema O (1975a) Activity of enzymes in partially frozen aqueous systems. In: Duckworth RB (ed) Water relations of food. Proceedings of the International Workshop, Glasgow 1974. Academic Press, London, pp 397–412

    Google Scholar 

  • Fennema O (1975b) Reaction kinetics in partially frozen aqueous systems, ibid., pp 539–556

  • Franks F (1985) Biophysics and biochemistry at low temperatures. Cambridge University Press, Cambridge, p 61

    Google Scholar 

  • Gerisch S, Ullmann G, Stubenrauch K, Jakubke HD (1994) Enzymatic peptide synthesis in frozen aqueous systems: Influence of modified reaction conditions on the peptide yield. Biol Chem Hoppe-Seyler 375: 825–828

    Google Scholar 

  • Gerisch S, Jakubke HD, Kreuzfeld HJ (1995) Enzymatic peptide synthesis in frozen aqueous systems: use of Nα-unprotected unusual acyldonors. Tetrahedron: Assymetry 6: 3039–3049

    Google Scholar 

  • Gilles AM, Lecroisey A, Keil B (1984) The primary structure ofα-clostripain light chain. Eur J Biochem 145: 469–476

    Google Scholar 

  • Grant NH, Alburn HE (1966) Acceleration of enzyme reactions in ice. Nature 212: 194

    Google Scholar 

  • Grant NH, Clark DE, Alburn HE (1961) Imidazole- and base-catalysed hydrolysis of penicillin in frozen systems. J Am Chem Soc 83: 4476–4477

    Google Scholar 

  • Haensler M, Keilhack H, Jakubke HD (1995a) Die Verwendung von Ficin zur Knüpfung von Peptidbindungen im gefrorenen wäßrigen System. Pharmazie 50: 184–187

    Google Scholar 

  • Haensler M, Ullmann G, Jakubke HD (1995b) The application of papain, ficin and clostripain in kinetically controlled peptide synthesis in frozen aqueous solutions. J Peptide Sci 1: 283–287

    Google Scholar 

  • Halcomb RL (1995) Hydrolysis and formation of C-O-bonds. Glycosidases. In: Drauz K, Waldmann H (eds) Enzyme catalysis in organic sythesis. VCH Verlagsgesellschaft mbH, Weinheim, pp 303–306

    Google Scholar 

  • Heiduschka P, Dittrich J, Neubert K, Barth A (1989) Die Verwendung der Dipeptidylpeptidase IV zur Knüpfung der Peptidbindung. Pharmazie 44: 778–780

    Google Scholar 

  • Holla EW, Schudok, M, Weber A, Zulauf, M (1992) Enzyme-catalysed synthesis of O-glycosylated peptide building blocks. J Carbohydr Chem 11: 659–663

    Google Scholar 

  • Huber RE, Gupta MN, Khare SK (1994) The active site and mechanism of theβ-galactosidase fromE.coli. Int J Biochem 26: 309–318

    Google Scholar 

  • Hugget ASD, Nixon DA (1957) Enzymatic detection of blood glucose. Biochem J 66: 12P

  • Ichikawa Y, Look GC, Wong CH (1992) Enzyme-catalysed oligosaccharide synthesis. Anal Biochem 202: 215–238

    Google Scholar 

  • Jakubke HD (1987) Enzymatic peptide synthesis. In: Udenfried S, Meienhofer J (eds) The peptides: analysis, synthesis, biology. Academic Press, New York, pp 103–165

    Google Scholar 

  • Jakubke HD (1994) Protease-catalysed peptide synthesis: basic principles, new synthesis strategies and medium engineering. J Chin Chem Soc 41: 355–370

    Google Scholar 

  • Jakubke HD, Eichhorn U, Gerisch S, Haensler M, Salchert K, Ullmann G, Ullmann D (1996) Nonconventional approaches to enzyme-catalysed peptide synthesis. In: Wilcox CS, Hamilton AD (eds) Molecular design and bioorganic catalysis. Proceedings of the NATO Advanced Workshop on Bioorganic Catalysis, Johnstown, USA, 1995. Kluwer Academic Publishers, pp 53–70

  • Leparoux S, Fortun Y, Colas B (1994) Synthesis ofβ-galactosyl-(hydroxy amino acid) derivatives usingβ-galactosidase activity fromAchatina achatina digestive juice. Biotechnol Lett 16: 677–682

    Google Scholar 

  • Lineweaver H (1939) The energy of activation of enzymatic reactions and their velocity below 0°C. J Am Chem Soc 61: 403–407

    Google Scholar 

  • Littlemore L, Schober P, Widmer F (1993) Proteases, ice and peptide bonds. In: Yanaihara N (ed) Peptide chemistry. Proceedings 2nd Japan Symposium on Peptide Chemistry, Escom, Leiden, pp 185–187

    Google Scholar 

  • Meos H, Tougu V, Haga M, Aaviksaar A, Schuster M, Jakubke HD (1993) Single step synthesis of kyotorphin in frozen solutions by chymotrypsin. Tetrahedron: Assymetry 4: 1559–1564

    Google Scholar 

  • Mitchell WM (1968) Hydrolysis at arginyl-proline in polypeptides by clostridiopeptidase B. Science 162: 374–375

    Google Scholar 

  • Mohr SC, Thach RE (1969) Application of ribonuclease T1 to the synthesis of oligoribonucleotides of defined base sequence. J Biol Chem 244: 6566–6576

    Google Scholar 

  • Monsan P, Paul F (1995) Enzymatic synthesis of oligosaccharides. FEMS Microbiol Rev 16: 187–192

    Google Scholar 

  • Nilsson KGI (1988) Enzymatic synthesis of oligosaccharides. TIBTECH 6: 256–264

    Google Scholar 

  • Nilsson KGI, Scigelova M (1994) Synthesis of glycosylated serine and threonine derivatives employing glycosidases. Biotechnol Lett 16: 671–676

    Google Scholar 

  • Nogues MV, Vilanova M, Cuchillo CM (1995) Bovine pancreatic ribonuclease A as a model of an enzyme with multiple substrate binding sites. Biochim Biophys Acta 1253: 16–24

    Google Scholar 

  • Ogle JD, Tytell AA (1953) The activity ofClostridium histolyticum proteinase on synthetic substrates. Arch Biochem Biophys 42: 327–336

    Google Scholar 

  • Orii Y, Morita M (1977) Measurement of the pH of frozen buffer solutions by using pH indicators. J Biochem 81: 163–168

    Google Scholar 

  • Parker R, Ring SG (1995) A theoretical analysis of diffusion controlled reactions in frozen solutions. Cryo-Lett 16: 197–208

    Google Scholar 

  • Pincock RE, Kiovsky TE (1965a) Bimolecular reactions in frozen organic solutions. J Am Chem Soc 87: 2072–2073

    Google Scholar 

  • Pincock RE, Kiovsky TE (1965b) Reactions in frozen solutions. II. Base-catalysed decomposition oft-butylperoxyformate in frozenp-xylene. J Am Chem Soc 87: 4100–4107

    Google Scholar 

  • Pincock RE, Kiovsky TE (1965c) Reactions in frozen solutions. III. Methyl iodide with triethylamine in frozen benzene solutions. J Am Chem Soc 88: 51–55

    Google Scholar 

  • Pincock, RE, Kiovsky TE (1966) Kinetics of reactions in frozen solutions. J Chem Educ 43: 358–360

    Google Scholar 

  • Rowe MJ, Smith MA (1970) Synthesis of 3′–5′-dinucleotides with RNAse T1. Biochem Biophys Res Commun 38: 393–399

    Google Scholar 

  • Rowe MJ, Smith MA (1972) Synthesis of oligoribonucleotides with ribonuclease T1. Biochim Biophys Acta 281: 338–346

    Google Scholar 

  • Sauerbrei B, Thiem J (1992) Galactosylation and glucosylation by use ofβ-galactosidase. Tetrahedron Lett 33: 201–204

    Google Scholar 

  • Schechter I, Berger A (1967) On the size of the active site of proteinases. I. Papain. Biochem Biophys Res Commun 27: 157–162

    Google Scholar 

  • Schellenberger V, Jakubke HD (1991) Protease-catalysed kinetically controlled peptide synthesis. Angew Chem, Int Ed Engl 30: 1437–1449

    Google Scholar 

  • Schellenberger V, Goerner A, Koennecke A, Jakubke HD (1991) Protease-catalysed peptide synthesis. Prevention of side reactions in kinetically controlled reactions. Pept Res 4: 265–269

    Google Scholar 

  • Schellenberger V, Turck CW, Rutter WJ (1994) Role of the S'subsites in serine protease catalysis. Active site mapping of rat chymotrypsin, rat trypsin,α-lytic protease and a cercarial protease fromSchistosoma mansoni. Biochemistry 33: 4251–4257

    Google Scholar 

  • Schuster M, Aaviksaar A, Jakubke HD (1990) Enzyme-catalysed peptide synthesis in ice. Tetrahedron 46: 8093–8102

    Google Scholar 

  • Schuster M, Aaviksaar A, Haga M, Ullmann U, Jakubke HD (1991) Protease-catalysed peptide synthesis in frozen aqueous systems: The “freeze-concentration model”. Biomed Biochim Acta 50: 84–89

    Google Scholar 

  • Schuster M, Ullmann G, Jakubke HD (1993a) Chymotrypsin-catalysed peptide synthesis in ice: use of unprotected amino acids as acyl acceptors. Tetrahedron Lett 34: 5701–5702

    Google Scholar 

  • Schuster M, Jakubke HD, Aaviksaar A (1993b) Thermodynamically controlledα-chymotrypsin-catalysed peptide synthesis in frozen aqueous solutions. In: Brandenberg P, Ivanow VT, Voelter W (eds) Chemistry of peptides and proteins, vols 5/6, DWI Reports, vols 112 A/B, pp 203–209

  • Taborsky G (1979) Protein alterations at low temperatures: an overview. In: Fennema O (ed) Proteins at low temperatures. Advances in chemistry series. Am Chem Soc, Washington, No 180, pp 1–26

    Google Scholar 

  • Takenaka N, Ueda A, Maeda Y (1992) Acceleration of the rate of nitrite oxidation by freezing in aqueous solution. Nature 358: 736–738

    Google Scholar 

  • Tougu V, Meos H, Haga M, Aaviksaar A, Jakubke HD (1993) Peptide synthesis by chymotrypsin in frozen solutions. Free amino acids as nucleophiles. FEBS Lett 329: 40–42

    Google Scholar 

  • Tougu V, Talts P, Meos H, Haga M, Aaviksaar A (1995) Aminolysis of acyl-chymotrypsin by amino acids. Kinetic appearance of concentration effect in peptide yield enhancement by freezing. Biochim Biophys Acta 1247: 272–276

    Google Scholar 

  • Ullmann D, Jakubke HD (1994) The specificty of clostripain fromClostridium histolyticum. Mapping the S'subsites via acyl transfer to amino acid amides and peptides. Eur J Biochem 223: 865–872

    Google Scholar 

  • Ullmann G, Jakubke HD (1993) Frozen aqueous systems: new efficient reaction media for enzyme-catalysed peptide bond formation. In: Schneider CH, Eberle AN (eds) Peptides 1992. Proceedings of the 22th European Peptide Symposium, Interlaken 1992. Escom, Leiden, pp 36–37

    Google Scholar 

  • William-Smith DL, Bray RC, Barber MJ, Tsopanakis AD, Vincent SP (1977) Changes in apparent pH on freezing aqueous buffer solutions and their relevance to biochemical electron-paramagnetic-resonance spectroscopy. Biochem J 167: 593–600

    Google Scholar 

  • Wolf B, Fischer G, Barth A (1978) Kinetische Untersuchungen an der Dipeptidylpeptidase IV. Acta Biol Med Germ 37: 409–420

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hänsler, M., Jakubke, H.D. Reverse action of hydrolases in frozen aqueous solutions. Amino Acids 11, 379–395 (1996). https://doi.org/10.1007/BF00807943

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00807943

Keywords

Navigation