Skip to main content
Log in

Neuroexcitatory amino acids: 4-methylene glutamic acid derivatives

Short Communication

  • Published:
Amino Acids Aims and scope Submit manuscript

Summary

A short synthesis of 4-methylene glutamic acid was achieved. Under thermal conditions the corresponding anhydride reacted with 2,3 dimethylbutadiene to afford the corresponding DIELS-ALDER adduct in good yield. L-4-methylene glutamic acid essentially acts on glutamate metabotropic receptors and is as potent as L-Glu in producing IPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Abe T, Sugihara H, Nawa H, Shigemoto R, Mizuno N, Nakanishi S (1992) Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J Biol Chem 267: 13361–13368

    Google Scholar 

  • Blanc E, Vignes M, Récasens M (1995) Protein kinase C differently regulates quisqualate and 1S,3R-trans-aminocyclopentane dicarboxylate-induced phosphoinositide hydrolysis duringin vitro development of hippocampal neurons. Neurochem Int (in press)

  • Bortolotto ZA, Bashir ZI, Davies CH, Collingridge GL (1994) A molecular switch activated by metabotropic glutamate receptors regulates induction of long-term potentiation. Nature 368: 740–743

    Google Scholar 

  • Copani A, Bruno VMG, Barresi V, Battaglia G, Condorelli DP, Nicoletti F (1995) Activation of metabotropic glutamate receptors prevents neuronal apoptosis in culture. J Neurochem 64: 101–108

    Google Scholar 

  • Dudek S, Bowen WD, Bear MF (1989) Postnatal changes in glutamate-stimulated phosphoinositide turnover in rat neocortical synaptoneurosomes. Dev Brain Res 47: 123–128

    Google Scholar 

  • Guiramand J, Sassetti I, Récasens M (1989) Developmental changes in the chemosensitivity of rat brain synaptoneurosomes to excitatory amino acids, estimated by inositol phosphate formation. Int J Devl Neurosci 7: 257–266

    Google Scholar 

  • Houamed KM, Kuijper JL, Gilbert TL, Haldeman BA, O'Hara PJ, Mulvihill ER, Almers W, Hagen FS (1991) Cloning, expression and gene structure of a G protein-coupled glutamate receptor from rat brain. Science 252: 1318–1321

    Google Scholar 

  • Kano M (1987) Quisqualate receptors are specifically involved in cerebellar synaptic plasticity. Nature 325: 276–279

    Google Scholar 

  • Masu M, Tanabe Y, Tsuchida K, Shigemoto R, Nakanishi S (1991) Sequence and expression of a metabotropic glutamate receptor. Nature 349: 760–765

    Google Scholar 

  • Mayat E, Lerner-Natoli M, Rondouin G, Lebrun F, Sassetti I, Récasens M (1994) Kainate-induced status epilepticus leads to a delayed increase in various specific glutamate metabotropic receptor responses in the hippocampus. Brain Res 645: 186–200

    Google Scholar 

  • Mayat E, Lebrun F, Sassetti I, Récasens M (1994) Ontogenesis of quisqualate-associated phosphoinositide metabolism in various regions of the rat nervous system. Int J Devl Neuroscience 12: 1–17

    Google Scholar 

  • Minakami R, Katsuki F, Sugiyama H (1993) A variant of metabotropic glutamate receptor subtype 5: an evolutionnary conserved insertion with no termination codon. Biochem Biophys Res Commun 194: 622–627

    Google Scholar 

  • Nakajima Y, Iwakabe H, Akazawa C, Nawa H, Shigemoto R, Mizuno N, Nakanishi S (1993) Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate. J Biol Chem 268: 11868–11873

    Google Scholar 

  • Nakanishi S (1992) Molecular diversity of glutamate receptors and implications for brain function. Science 258: 597–603

    Google Scholar 

  • Nicoletti F, Iadarola MJ, Wroblewski JT, Costa E (1986) Excitatory amino acids recognition sites coupled with inositol phospholipids metabolism: developmental changes and interaction with alpha-1-adrenoceptors. Proc Natl Acad Sci USA 83: 1931–1935

    Google Scholar 

  • Nicoletti F, Wroblewski JT, Ahlo H, Eva C, Fadda E, Costa E (1987) Lesions of putative glutamatergic pathways potentiate the increase of inositol phospholipid hydrolysis elicited by excitatory amino acids. Brain Res 436: 103–112

    Google Scholar 

  • Okamoto N, Hori S, Akazawa C, Hayashi Y, Shigemoto R, Mizuno N, Nakanishi S (1994) Molecular characterization of a new metabotropic glutamate receptor mGluR7 coupled to inhibitory cyclic AMP signal transduction. J Biol Chem 269: 1231–1236

    Google Scholar 

  • Otani S, Ben Ari Y (1991) Metabotropic receptor-mediated long-term potentiation in rat hippocampus. Eur J Pharmacol 205: 325–326

    Google Scholar 

  • Palmer E, Nangel-Taylor K, Krause JD, Roxas A, Cotman CW (1990) Changes in excitatory amino acid modulation of phosphoinositide metabolism during development. Dev Brain Res 51: 132–134

    Google Scholar 

  • Pin JP, Waeber C, Prezeau L, Bockaert J (1992) Alternative splicing generates metabotropic glutamate receptors inducing different patterns of calcium release inXenopus oocytes. Proc Natl Acad Sci USA 89: 10331–10335

    Google Scholar 

  • Récasens M, Guiramand J, Nourigat A, Sassetti I, Devilliers G (1988) A new quisqualate receptor subtype (sAA2) responsible for glutamate-induced inositol phosphate formation in rat brain synaptoneurosomes. Neurochem Int 13: 463–467

    Google Scholar 

  • Schoepp DD, Johnson BG (1993) Pharmacology of metabotropic glutamate receptor inhibition of cyclic AMP formation in the adult rat hippocampus. Neurochem Int 22: 277–283

    Google Scholar 

  • Seren MS, Aldinio C, Zanoni R, Leon A, Nicoletti F (1989) Stimulation of inositol phospholipid hydrolysis by excitatory amino acids is enhanced in brain slices from vulnerable regions after transient global ischaemia. J Neurochem 53: 1700–1705

    Google Scholar 

  • Shigemoto R, Abe T, Nomura S, Nakanishi S, Hirano T (1994) Antibodies inactivating mGluR1 metabotropic glutamate receptor block long-term depression in cultured Purkinje cells. Neuron 12: 1245–1255

    Google Scholar 

  • Sladeczek F, Pin JP, Récasens M, Bockaert J, Weiss S (1985) Glutamate stimulates inositol phosphate formation in striatal neurons. Nature 317: 717–719

    Google Scholar 

  • Sommer B, Seeburg PH (1992) Glutamate receptor channels: novel properties and new clones. Trends Pharma Sci 13: 291–296

    Google Scholar 

  • Sugiyama H, Ito I, Hirono C (1987) A new type of glutamate receptor linked to inositol phospholipid metabolism. Nature 325: 531–533

    Google Scholar 

  • Tabcheh M, El Achqar A, Pappalardo L, Roumestant ML, Viallefont Ph (1991) Alkylation and protonation of chiral Schiff bases: diastereoselectivity as a function of nature of reactants. Tetrahedron 47: 4611–4618

    Google Scholar 

  • Tanabe Y, Masu M, Ishii T, Shigemoto R, Nakanishi S (1992) A family of metabotropic glutamate receptors. Neuron 8: 169–179

    Google Scholar 

  • Tanabe Y, Nomura A, Masu M, Shigemoto R, Mizuno N, Nakanishi S (1993) Signal transduction, pharmacological properties, and expression patterns of two rat metabotropic glutamate receptors, mGluR3 and mGluR4. J Neurosci 13: 1372–1378

    Google Scholar 

  • Zheng F, Gallagher JP (1992) Metabotropic glutamate receptors are required for the induction of long-term potentiation. Neuron 9: 163–172

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Receveur, J.M., Roumestant, M.L. & Viallefont, P. Neuroexcitatory amino acids: 4-methylene glutamic acid derivatives. Amino Acids 9, 391–395 (1995). https://doi.org/10.1007/BF00807276

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00807276

Keywords

Navigation