Skip to main content
Log in

Further contribution to the study of corticostriatal glutamatergic and nigrostriatal dopaminergic interactions within the striatal network: an in vivo voltammetric investigation

  • Published:
Amino Acids Aims and scope Submit manuscript

Summary

In vivo voltammetry was used in freely moving rats to study the processes whereby striatal dopamine (DA) release is regulated by corticostriatal glutamatergic neurons. Electrical stimulation of the cerebral cortex was found to markedly increase the striatal DA-related voltammetric signal amplitude. Similar enhancements have been observed after intracerebroventricular administration of 10nmoles glutamate, quisqualate and AMPA, whereas NMDA was found to decrease the amplitude of the striatal signals. The NMDA receptor antagonist APV did not significantly affect the voltammetric signal but prevented the NMDA-induced depression of the DA-related signals. These data are in agreement with those obtained in numerous previous studies suggesting that the glutamatergic corticostriatal neurons exert activatory effects on the striatal DA release via non-NMDA receptors. The mechanism involved might be of a presynaptic nature. The role of the NMDA receptors may however consist of modulating the dopaminergic transmission phasically and in a depressive way, which would be consistent with behavioural data suggesting the existence of a functional antagonism between the activity of the corticostriatal glutamatergic and nigrostriatal dopaminergic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Glu:

glutamate

DA:

dopamine

NMDA:

N-methyl-D-aspartate

CPP:

3-(2-carboxypiperazin-4µl)propyl-1-phosphonic acid

AMPA:

α-amino-3-hydroxy-5-metylisoxazole-4-propionic acid

APV:

aminophosphonovaleric acid

DOPAC:

dihydroxyphenylacetic acid

HVA:

homovanillic acid

DARPP 32:

dopamine-cAMP-regulated phosphoprotein 32

CSF:

cerebrospinal fluid

References

  • Barbeito L, Chéramy A, Godeheu G, Desce JM, Glowinski J (1990) Eur J Neurosci 2: 304–311

    Google Scholar 

  • Butcher SP, Liptrot J, Arbuthnott GW (1991) Neurosci Lett 122: 245–248

    Google Scholar 

  • Carlsson M, Carlsson A (1990) TINS 13: 272–276

    Google Scholar 

  • Carter CJ, Pycock CJ (1980) Brain Res 192: 163–176

    Google Scholar 

  • Carter CJ, L'Heureux R, Scatton B (1988) J Neurochem 51: 462–468

    Google Scholar 

  • Chéramy A, Romo R, Godeheu G, Baruch P, Glowinski J (1986) Neuroscience 19: 1081–1090

    Google Scholar 

  • Clow DW, Jhamandas K (1988) J Pharmacol Exp Ther 248: 722–728

    Google Scholar 

  • Dusticier N, Nieoullon A (1987) Neurochem Int 10: 275–280

    Google Scholar 

  • El Ganouni S, Forni C, Nieoullon A (1987) Brain Res 404: 239–256

    Google Scholar 

  • Elliott PJ, Close SP, Walsh DM, Hayes AG, Marriott AS (1990) J Neural Transm 2: 91–100

    Google Scholar 

  • Errami M, Nieoullon A (1988) J Neurochem 51: 579–586

    Google Scholar 

  • Forni C, Nieoullon A (1984) Brain Res 297: 11–20

    Google Scholar 

  • Forni C, Brundin P, Strecker RE, El Ganouni S, Bjorklund A, Nieoullon A (1989) Exp Brain Res 76: 75–87

    Google Scholar 

  • Fuxe K, Agnati LF (1991) Volume transmission in the brain. Novel mechanisms for neural transmission. Adv Neuroscience 1: 1–624

    Google Scholar 

  • Giorguieff MF, Kemel ML, Glowinski J (1977) Neurosci Lett 6: 73–77

    Google Scholar 

  • Girault JA, Halpain S, Greengard P (1990) TINS 13: 325–326

    Google Scholar 

  • Glick SD (1972) Europ J Pharmacol 20: 351–355

    Google Scholar 

  • Hassler R, Hang P, Nitsch C, Kim JS, Paik K (1982) J Neurochem 38: 1087–1098

    Google Scholar 

  • Herrera-Marschitz M, Goiny M, Utsumi H, Ferre S, Guix T, Ungerstedt U (1990) In: Lubec G, Rosenthal GA (eds) Amino acids, chemistry, biology and medicine. ESCOM Science, Leiden, pp 599–604

    Google Scholar 

  • Herrera-Marschitz M (1991) In: Bernardi G, Carpenter MB, Di Chiara G, Morelli M, Stanzione P (eds) The basal ganglia III. Plenum Press, New York, pp 357–362

    Google Scholar 

  • Imperato A, Honoré T, Jensen LH (1990) Brain Res 530: 223–228

    Google Scholar 

  • Jhamandas K, Marien M (1987) Br J Pharmacol 90: 641–650

    Google Scholar 

  • Jones MW, Kilpatrick IC, Phillipson OT (1988) Brain Res 475: 8–20

    Google Scholar 

  • Kabuto H, Yokoi I, Mizukawa K, Mori A (1989) Neurochem Res 14: 1075–1080

    Google Scholar 

  • Kashihara K, Hamamura T, Okumura K, Otsuki S (1990) Brain Res 528: 80–82

    Google Scholar 

  • Konig JFR, Klippel RA (1963) The rat brain. A stereotaxic atlas of the forebrain and lower part of the brain stem. Williams and Wilkins, Baltimore

    Google Scholar 

  • Krebs MO, Desce JM, Kemel ML, Gauchy C, Godeheu G, Chéramy A, Glowinski J (1991a) J Neurochem 56: 81–85

    Google Scholar 

  • Krebs MO, Kemel ML, Gauchy C, Desban M, Glowinski J (1989) Europ J Pharmacol 166: 567–570

    Google Scholar 

  • Krebs MO, Trovero F, Desban M, Gauchy C, Glowinski J, Kemel ML (1991b) J Neurosci 11: 1256–1262

    Google Scholar 

  • Leviel V, Gobert A, Guibert B (1990) Neurosci 39: 305–312

    Google Scholar 

  • Mehta AK, Ticku MK (1990) Life 46: 37–42

    Google Scholar 

  • Moghaddam B, Gruen RJ (1991) Brain Res 544: 329–330

    Google Scholar 

  • Moghaddam B, Gruen RJ, Roth RH, Bunney BS, Adams RN (1990) Brain Res 518: 55–60

    Google Scholar 

  • Nieoullon A, Chéramy A, Glowinski J (1978) Brain Res 145: 69–83

    Google Scholar 

  • Nieoullon A, Kerkerian L, Dusticier N (1983) Exp Brain Res [Suppl]7: 54–65

    Google Scholar 

  • Rao TS, Cler JA, Mick SJ, Emmet MR, Farah JM, Contreras PC, Iyengar S, Wood PL (1991) J Neurochem 56: 907–913

    Google Scholar 

  • Roberts PJ, Sharif NA (1978) Brain Res 157: 391–395

    Google Scholar 

  • Roberts PJ, Mc Bean GJ, Sharif NA, Thomas EM (1982) Brain Res 235: 83–91

    Google Scholar 

  • Samuel D., Errami M, Nieoullon A (1990) J Neurochem 54: 1926–1933

    Google Scholar 

  • Scatton B, Worms P, Lloyd KG, Bartholini G (1982) Brain Res 232: 331–343

    Google Scholar 

  • Shimizu N, Duan S, Hori T, Oomura Y (1990) Brain Res Bull 25: 99–102

    Google Scholar 

  • Snell LD, Johnson KM (1986) J Pharmacol Exp Ther 238: 938–946

    Google Scholar 

  • Wang JKT (1991) J Neurochem 57: 819–822

    Google Scholar 

  • Weihmuller FB, O'Dell SJ, Cole BN, Marshall JF (1991) Brain Res 549: 230–235

    Google Scholar 

  • Westerink BHC (1985) Neurochem Int 7: 221–227

    Google Scholar 

  • Worms P, Willigens MT, Continsouza-Blanc D, Lloyd KG (1985) Europ J Pharmacol 113: 53–59

    Google Scholar 

  • Zetterström T, Sharp T, Collin AK, Ungerstedt U (1988) Europ J Pharmacol 148: 327–334

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Laboratory associated with the University of Aix-Marseille II

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forni, C., Dusticier, N. & Nieoullon, A. Further contribution to the study of corticostriatal glutamatergic and nigrostriatal dopaminergic interactions within the striatal network: an in vivo voltammetric investigation. Amino Acids 3, 53–68 (1992). https://doi.org/10.1007/BF00806008

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00806008

Keywords

Navigation