Skip to main content
Log in

Amino acids and their derivatives as radioprotective agents

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Summary

Numerous amino acids and their analogs are capable of protecting biological systems from the toxic effects of ionizing radiation. These radioprotective agents can be classified into two broad groups, depending upon the presence or absence of a free or potentially free sulfhydryl group. The sulfhydryl-containing compounds have been studied extensively and are thought to exert their radioprotective effects by several mechanisms, including free radical scavenging and hydrogen atom donation. Several non-sulfhydryl-containing amino acids are also being investigated for their radioprotective effects. These agents are less well known than the familiar sulfhydryl compounds, but possess very interesting protective qualities. In short, the study of amino acids and their derivatives as radioprotective agents continues to contribute to an understanding of processes involved in radiation toxicity and to offer new compounds with potential application to situations of human exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarkrog A (1990) Environmental radiation and radioactive releases. Int J Radiat Biol 57: 619–631

    Google Scholar 

  • Abe M, Takahashi M, Takeuchi K, Fukuda M (1968) Studies on the significance of taurine in radiation injury. Radiat Res 33: 563–573

    Google Scholar 

  • Allalunis-Turner MJ, Walden TL, Sawich C (1989) Induction of marrow hypoxia by radioprotective agents. Radiat Res 118: 581–586

    Google Scholar 

  • Allalunis-Turner MJ (1990) Reduced bone marrow pO2 following treatment with radioprotective drugs. Radiat Res 122: 262–267

    Google Scholar 

  • Alper T, Howard-Flanders P (1956) Role of oxygen in modifying the radiosensitivity ofE. coli B. Nature 178: 978–979

    Google Scholar 

  • Antoku S (1975) Chemical protection of cultured mammalian cells against fast neutrons. Int J Radiat Biol 27: 287–292

    Google Scholar 

  • Ayene SI, Kale RK, Srivastava PN (1988) Radioprotective effects of 2-mercaptopropionyl glycine on radiation-induced lipid peroxidation and enzyme release in erythrocytes. Int J Radiat Biol 53: 629–639

    Google Scholar 

  • Ayene SI, Srivastava PN (1985) Radioprotective effect of 2-mercaptopropionyl glycine on radiation-induced microsomal lipid peroxidation. Int J Radiat Biol 48: 197–205

    Google Scholar 

  • Bacq ZM (1965) Chemical protection against ionizing radiation. Charles C Thomas, Springfield, Illinois

    Google Scholar 

  • Bacq ZM, Alexander P (1964) Importance for radio-protection of the reaction of cells to sulphydryl and disulphide compounds. Nature 203: 162–164

    Google Scholar 

  • Bacq ZM, Herve A, Lecomte J, Fischer P, Blavier J, Dechamps G, Le Bihan H, Rayet P (1951) Protection contre le rayonnement X par la ß-mercaptoéthylamine. Arch Internat Physiol 59: 442–447

    Google Scholar 

  • Baker MA, Hagner BA (1990) Diamide induced shift in protein and glutathione thiol: disulfide status delays DNA rejoining after X-irradiation of human cancer cells. Biochim Biophys Acta 1037: 39–47

    Google Scholar 

  • Barendsen GW, Walter HMD (1964) Effects of different ionizing radiations on human cells in tissue culture. IV. Modification of radiation damage. Radiat Res 21: 314–329

    Google Scholar 

  • Barron ESG, Dickman S, Muntz JA, Singer TP (1949) Studies on the mechanism of action of ionizing radiations. I. Inhibition of enzymes by X-rays. J Gen Physiol 32: 537–552

    Google Scholar 

  • Baskerville A, Hambleton P, Bengough JE (1980) Pathologic features of glutaminase toxicity. Br J Exp Pathol 61: 132–136

    Google Scholar 

  • Basu SK, Chandra K, Chuttani K (1987) Radioprotection of peripheral blood cells with a combination of hydroxytryptophan and a thiol compound in mice. Acta Oncologica 26: 229–232

    Google Scholar 

  • Bird RP (1980) Cysteamine as a protective agent with high-LET radiations. Radiat Res 82: 290–296

    Google Scholar 

  • Bisht KS, Uma Devi P, Jagetia GC, Kamath G (1990) Drug combination against single drug treatment in radiation protection of the bone marrow CFU. Strahlenther Onkol 166: 545–548

    Google Scholar 

  • Bogo V (1988) Behavioral radioprotection. Pharmacol Ther 39: 73–78

    Google Scholar 

  • Broerse JJ, Dennis JA (1990) Dosimetric aspects of exposure of the population to ionizing radiation. Int J Radiat Biol 57: 633–645.

    Google Scholar 

  • Brown DQ, Graham WJ, MacKenzie LJ, Pittock JW, Shaw LM (1988) Can WR-2721 be improved upon? Pharmacol Ther 39: 157–168.

    Google Scholar 

  • Buc-Calderon P, Defresne MP, Barvais C, Roberfroid M (1989a)N-Acyl dehydroalanines protect from radiation toxicity and inhibit radiation carcinogenesis in mice. Carcinogenesis 10: 1641–1644

    Google Scholar 

  • Buc-Calderon P, Praet M, Ruysschaert JM, Roberfroid M (1987) Free radical modulation byN-substituted dehydroalanines, a new way to improve therapeutic activity of anticancer drugs. Cancer Treat Rev 14: 379–382

    Google Scholar 

  • Buc-Calderon P, Praet M, Ruysschaert JM, Roberfroid M (1989b) Increasing therapeutic effect and reducing toxicity of doxorubicin byN-acyl dehydroalanines. Eur J Cancer Clin Oncol 25: 679–685

    Google Scholar 

  • Buc-Calderon P, Praet M, Ruysschaert JM, Roberfroid M (1990) Reduction of toxicity and increase of antitumor effect of adriamycin byN-acyl dehydroalanines, a new family of free radical scavengers. In: Emerit I (ed) Antioxidants in therapy and preventive medicine. Plenum Press, New York, pp 339–334

    Google Scholar 

  • Buc-Calderon P, Roberfroid M (1988) Inhibition of O 2 - and HO.-mediated processes by a new class of free radical scavengers: TheN-acyl dehydroalanines. Free Radic Res Comm 5: 159–168

    Google Scholar 

  • Buc-Calderon P, Roberfroid M (1989) Inhibition of rat liver microsomal lipid peroxidation byN-acyldehydroalanines: Anin vitro comparative study. Arch Biochem Biophys 273: 339–346

    Google Scholar 

  • Bump EA, Brown JM (1990) Role of glutathione in the radiation response of mammalian cellsin vitro andin vivo. Pharmacol 47: 117–136

    Google Scholar 

  • Cerutti PA, Nygaard OF, Simic MF (eds) (1988) Anticarcinogenesis and radiation protection. Plenum Press, New York

    Google Scholar 

  • Clarke RH, Southwood TRE (1989) Risks from ionizing radiation. Nature 338: 197–198

    Google Scholar 

  • Copeland ES (1978) Mechanisms of radioprotection — a review. Photochem Photobiol 28: 839–844

    Google Scholar 

  • Dahl TA, Midden WR, Hartman PE (1988) Some prevalent biomolecules as defenses against singlet oxygen damage. Photochem Photobiol 47: 357–362

    Google Scholar 

  • Demonchaux P, Laayoun A, Demeunynck M, Lhomme J (1989) Synthesis of N-acridinyl and N-quinolinyl derivatives of radioprotective amino-thiols. Tetrahedron 45: 6455–6466

    Google Scholar 

  • Den Boer PJ, van Loon AAWM, Mackenbach P, van der Schans GP, Grootegoed JA (1990) Effect of glutathione depletion of the cytotoxicity of xenobiotics and induction of single-strand DNA breaks by ionizing radiation in isolated hamster round spermatids. J Reprod Fertil 88: 259–269

    Google Scholar 

  • Denekamp J, Rojas A, Stevens G (1988) Redox competition and radiosensitivity: Implications for testing radioprotective compounds. Pharmacol Ther 39: 59–66

    Google Scholar 

  • Dillon J, Kennedy JC, Pottier RH, Roberts JE (1988)In vitro andin vivo protection against phototoxic side effects of photodynamic therapy by radioprotective agents WR-2721 and WR-77913. Photochem Photobiol 48: 235–238

    Google Scholar 

  • Djurhuus R, Svardal AM, Ueland PM (1990) Cysteamine increases homocysteine export and glutathione content by independent mechanisms in C3H/10T1/2 cells. Mol Pharmacol 38: 327–332

    Google Scholar 

  • Dupin AM, Boldryev AA, Arkhipenko YV, Kagan VE (1984) Protection of Ca++ transport by carnosine against disturbances induced by lipid peroxidation. Bull Exp Biol Med 98: 1071–1073

    Google Scholar 

  • Durand DE, Olive PL (1989) Radiosensitisation and radioprotection by BSO and WR-2721: The role of oxygenation. Br J Cancer 60: 517–522

    Google Scholar 

  • Feuer L, Benkó G (1981) Effect of glutaurine and its derivatives and their combinations with radiation protective substances upon irradiated mice. Acta Radiol Oncol 20: 319–324

    Google Scholar 

  • Feuer L, Kovacs P, Csaba G (1979) The effect of litoralon (gamma-L-glutamyl-taurine) on the lysosomal activity of mesenchymal cells and macrophages. Comp Biochem Physiol 64: 299–303

    Google Scholar 

  • Feuer L, Kovacs P, Nagy Z, Török O, Csaba G (1980) Complex morphological study of the effect of glutaurine in mast cells. Acta Morphol Acad Sci Hung 28: 21–27

    Google Scholar 

  • Feuer L, Ormai S (1978) Radioprotective effect of a protein free parathyroid extract. Experientia 34: 3–7

    Google Scholar 

  • Feuer L, Török O, Csaba G (1978) Effect of glutaurine, a newly discovered parathyroid hormone, on rat thymus cultures. Acta Morphol Acad Sci Hung 26: 75–78

    Google Scholar 

  • Floersheim GL, Bieri A (1990) Further studies on selective radioprotection by organic zinc salts and synergism of zinc aspartate with WR 2721. Br J Radiol 63: 468–475

    Google Scholar 

  • Floersheim GL, Chiodetti N, Bieri A (1988) Differential radioprotection of bone marrow and tumour cells by zinc aspartate. Br J Radiol 61: 501–508

    Google Scholar 

  • Floersheim GL, Floersheim P (1986) Protection against ionising radiation and synergism with thiols by zinc aspartate. Br J Radiol 59: 597–602

    Google Scholar 

  • Foye WO (1969) Radiation-protective agents in mammals. J Pharm Sci 58: 283–300

    Google Scholar 

  • Foye WO (1973) Mechanisms of radiation protection by the aminothiols. Int J Sulfur Chem 8: 161–171

    Google Scholar 

  • Gardner MJ, Snee MP, Hall AJ, Powell CA, Downes S, Terrell JD (1990) Results of case-control study of leukaemia and lymphoma among young people near Sellafield nuclear plant in West Cumbria. Br Med J 300: 423–429

    Google Scholar 

  • Geraci JP, Jackson KL, Mariano MS (1988) Protection against the physiological derangements associated with acute intestinal radiation injury. Pharmacol Ther 39: 45–57

    Google Scholar 

  • Ghose A, Ganguly SK, Kaur J (1983) Protection with combinations of hydroxytryptophan and some thiol compounds against whole-body gamma irradiation. Int J Radiat Biol 44: 175–181

    Google Scholar 

  • Glover D, Fox KR, Weiler C, Kligerman MM, Turrisi A, Glick JH (1988) Clinical trials of WR-2721 prior to alkylating chemotherapy and radiotherapy. Pharmacol Ther 39: 3–7

    Google Scholar 

  • Glover D, Glick JH, Weller C, Fox K, Turrisi A, Kligerman MM (1986) Phase I/II trials of WR-2721 andcis-platinum. Int J Radiat Oncol Biol Phys 14: 1119–1122

    Google Scholar 

  • Goffman TE, Raubitschek A, Mitchell JB, Glatstein E (1990) The emerging biology of modern radiation oncology. Cancer Res 50: 7735–7744

    Google Scholar 

  • Grdina DJ, Nagy B, Sigdestad CP (1988) Radioprotectors in treatment therapy to reduce risk in secondary tumor induction. Pharmacol Ther 39: 21–25

    Google Scholar 

  • Grunbaum ZA, Kroll K, Greene JL, Rasey JS, Krohn KA (1990) Synthesis and radiobiological applications of[35S]L-homocysteine thiolactone. Nucl Med Biol 17: 473–478

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1986) Oxygen free radicals and iron in relation to biology and medicine: Some problems and concepts. Arch Biochem Biophys 246: 501–514

    Google Scholar 

  • Harris JW (1983) Cellular thiols in radiation and drug response: Use of specific reagents. In: Nygaard OF, Simic MG (eds) Radioprotectors and anticarcinogens. Academic Press, New York, pp 255–274

    Google Scholar 

  • Hartman PE, Hartman Z, Citardi MJ (1988) Ergothioneine, histidine, and two naturally occurring histidine dipeptides as radioprotectors against gamma-irradiation inactivation of bacteriophages T4 and P22. Radiat Res 114: 319–330

    Google Scholar 

  • Held KD, Harrop HA, Michael BD (1984) Effects of oxygen and sulphydryl-containing compounds on irradiated transforming DNA. II. Glutathione, cysteine and cysteamine. Int J Radiat Biol 45: 615–626

    Google Scholar 

  • Hopewell JW (1990) The skin: Its structure and response to ionizing radiation. Int J Radiat Biol 57: 751–773

    Google Scholar 

  • Issels RD, Nagele A (1989) Promotion of cystine uptake, increase of glutathione biosynthesis, and modulation of glutathione status byS-2-(3-aminopropylamino)ethyl phosphorothioic acid (WR-2721) in Chinese hamster cells. Cancer Res 49: 2082–2086

    Google Scholar 

  • Kaluszyner A, Czerniak P, Bergmann ED (1961) Thiazolidines and aminoalkylthiosulfuric acids as protecting agents against ionizing radiation. Radiat Res 14: 23–28

    Google Scholar 

  • Kay RE, Early JC, Entenman C (1957) Increased urinary excretion of taurine and urea by rats after X-irradiation. Radiation Res 6: 98–109

    Google Scholar 

  • Kim J-A, Baker DG, Hahn SS, Goodchild NT, Constable WC (1983) Topical use of N-acetylcysteine for reduction of skin reaction to radiation therapy. Sem Oncol 10: 86–89

    Google Scholar 

  • Kinsella TJ, Dobson PP, Russo A, Mitchell JB, Fornace AJ (1986) Modulation of X ray DNA damage by SR-2508 ± buthionine sulfoximine. Int J Radiat Oncol Biol Phys 12: 1127–1130

    Google Scholar 

  • Klayman DL, Copeland ES (1975) The design of antiradiation agents. In: Ariëns EJ (ed) Drug design, vol 6. Academic Press, New York, pp 81–142

    Google Scholar 

  • Klimberg VS, Salloum RM, Kasper M, Plumley DA, Dolson DJ, Hautamaki RD, Mendenhall WR, Bova FC, Bland KI, Copeland EM, Souba WW (1990a) Oral glutamine accelerates healing of the small intestine and improves outcome after whole abdominal radiation. Arch Surg 125: 1040–1045

    Google Scholar 

  • Klimberg VS, Souba WW, Dolson DJ, Salloum RM, Hautamaki RD, Plumley DA, Mendenhall WM, Bova FJ, Khan SR, Hackett RL, Bland KI, Copeland EM (1990b) Prophylactic glutamine protects the intestinal mucosa from radiation injury. Cancer 66: 62–68

    Google Scholar 

  • Kohn KW, Grimek-Ewig RA (1973) Alkaline elution analysis, a new approach to the study of DNA single-strand interruptions in cells. Cancer Res 33: 1849–1853

    Google Scholar 

  • Kramer RA, Soble M, Howes AE, Montoya VP (1989) The effect of glutathione (GSH) depletionin vivo by buthionine sulfoximine (BSO) on the radiosensitization of SR 2508. Int J Radiat Oncol Biol Phys 16: 1325–1329

    Google Scholar 

  • Lafleur MVM, Woldhuis J, Loman H (1980) Effects of sulphydryl compounds on the radiation damage in biologically active DNA. Int J Radiat Biol 37: 493–498

    Google Scholar 

  • Lamperti A, Ziskin MC, Bergey E, Gorlowski J, Sodicoff M (1990) Transdermal absorption of radioprotectors in the rat using permeation-enhancing vehicles. Radiat Res 124: 194–200

    Google Scholar 

  • Landauer MR, Davis HD, Dominitz JA, Weiss JF (1987) Dose and time relationships of the radioprotector WR-2721 on locomotor activity in mice. Pharmacol Biochem Behav 27: 573–576

    Google Scholar 

  • Landauer MR, Hirsch DD, Dominitz JA, Weiss JF (1988) Comparative behavioral toxicity of four sulfhydryl radioprotective compounds in mice: WR-2721, cysteamine, diethyldithiocarbamate, andN-acetylcysteine. Pharmacol Ther 39: 97–100

    Google Scholar 

  • Langendorff H, Melching HJ, Streffer C (1961) Der Einfluss des 5-Hydroxytryptamin auf strahlenbedingte Veränderungen des Aminosäurestoffwechsels. Strahlentherapie 116: 1–14

    Google Scholar 

  • Langendorff M, Koch R (1958) Untersuchungen über einen biologischen Strahlenschutz. XXIII. Mitteilung Homocysteinthiolacton als Strahlenschutz. Strahlentherapie 106: 451–457

    Google Scholar 

  • Lespinasse F, Oiry J, Fatome M, Ardouin A, Imbach J, Malaise EP, Guichard M (1985) Radioprotection of EMT6 tumor by a new class of radioprotectors based on a pseudopeptide cysteamine combination. Int J Radiat Oncol Biol Phys 11: 1035–1038

    Google Scholar 

  • Levitt SH (1989) Radiation carcinogenesis. In: Vaeth JM, Meyer JL (eds) Radiation tolerance of normal tissues. Karger, Basel, pp 408–416

    Google Scholar 

  • Lohman PHM, Vos O, Van Sluis CA, Cohen JA (1970) Chemical protection against breaks induced in DNA of human and bacterial cells by x-irradiation. Biochim Biophys Acta 224: 339–352

    Google Scholar 

  • Mahaney FX (1990) Agent designed for war now in doctors' armamentarium. J Natl Cancer Inst 82: 255–257

    Google Scholar 

  • Maurizis JC, Godeneche D, Madelmont JC, Moreau MF, Oiry J, Imbach JL, Veyre A (1988) Metabolism of a new radioprotector;S-acetyl-N-glycyl cysteamine. I. Absorption, distribution and excretion of metabolites in mice bearing EMT6 tumours. Xenobiotica 18: 1119–1128

    Google Scholar 

  • Maurizis JC, Madelmont JC, Godeneche D, Moreau MF, Oiry J, Imbach JL, Veyre A, Meyniel G (1989) Metabolism of a new radioprotector;S-acetyl-N-glycyl cysteamine. II. Main tissue metabolites in mice bearing EMT6 tumours. Xenobiotica 19: 833–842

    Google Scholar 

  • McCarthy KF, Hale ML (1988) Measurement of the radiosensitivity of rat marrow by flow cytometry. Pharmacol Ther 39: 79–83

    Google Scholar 

  • McCully KS, Vezeridis MP (1989) Histopathological effects of homocysteine thiolactone on epithelial and stromal tissues. Exp Mol Pathol 51: 159–170

    Google Scholar 

  • Melville DB (1958) Ergothioneine. Vitam Horm 17: 155–204

    Google Scholar 

  • Mori T, Watanabe M, Horikawa M, Nikaido P, Kimura H, Aoyama T, Sugahara T (1983) WR-2721, its derivatives and their radioprotective effects on mammalian cells in culture. Int J Radiat Biol 44: 41–53

    Google Scholar 

  • Murray D, vanAnkeren SC, Milas L, Meyn RE (1988) Radioprotective action of aminothiols invitro and in vivo: Comparison between effects on DNA damage and cell survival. Pharmacol Ther 39: 151–153

    Google Scholar 

  • Nagy B, Dale DJ, Grdina DJ (1986) Protection against cis-diamminedichloroplatinum cytotoxicity and mutagenicity in V79 cells by WR-1065. Cancer Res 46: 1132–1135

    Google Scholar 

  • Nagy B, Grdina DJ (1986) Protective effects of WR-1065 against bleomycin and nitrogen mustard-induced mutagenicity in V79 cells. Int J Radiat Oncol Biol Phys 12: 1475–1478

    Google Scholar 

  • Oiry J, Pue JY, Imbach JL, Fatome M, Sentenac-Roumanou H, Lion C (1986) Synthesis and radioprotective activity of new cysteamine and cystamine derivatives. J Med Chem 29: 2217–2225

    Google Scholar 

  • Painter RB (1979) The role of DNA damage and repair in cell killing induced by ionizing radiation. In: Meyn RE, Withers HR (eds) Radiation biology in cancer research. Raven Press, New York, pp 59–68

    Google Scholar 

  • Patt HM, Tyree EB, Straube RL, Smith DE (1949) Cysteine protection against X irradiation. Science 110: 213–214

    Google Scholar 

  • Patt HM (1953) Protective mechanisms in ionizing radiation injury. Physiol Rev 33: 35–76

    Google Scholar 

  • Peak MJ, Peak JG (1989) Solar-ultraviolet-induced damage to DNA. Photodermatol 6: 1–15

    Google Scholar 

  • Phillips TL (1988) Overview of symposium: Physiologic mechanisms in radioprotection. Pharmacol Ther 39: 403–404

    Google Scholar 

  • Praet M, Buc-Calderon P, Pollakis G, Roberfroid M, Ruysschaert JM (1988) A new class of free radical scavengers reducing adriamycin mitochondrial toxicity. Biochem Pharmacol 37: 4617–4622

    Google Scholar 

  • Radford IR (1985) The level of induced DNA double-strand breakage correlates with cell killing after X-irradiation. Int J Radiat Biol 48: 45–54

    Google Scholar 

  • Radford IR (1986) Effect of radiomodifying agents on the ratios of X-ray-induced lesions in cellular DNA: Use in lethal lesion determination. Int J Radiat Biol 49: 621–637

    Google Scholar 

  • Raleigh, JA (1988) Radioprotection of membranes. Pharmacol Ther 39: 109–113

    Google Scholar 

  • Rao DV, Narra VR, Howell RW, Sastry KSR (1990) Biological consequence of nuclear versus cytoplasmic decays of125I: Cysteamine as a radioprotector against Auger cascadesin vivo. Radiat Res 124: 188–193

    Google Scholar 

  • Rasey JS, Spence A, Badger CC, Krohn KA, Vera D, Livesley JC (1988) Specific protection of different normal tissues. Pharmacol Ther 39: 33–43

    Google Scholar 

  • Révész L, Malaise EP (1983) Significance of cellular glutathione in radioprotection and repair of radiation damage. In: Larsson A (ed) Functions of glutathione: biochemical, physiological, toxicological, and clinical aspects. Raven Press, New York, pp 163–173

    Google Scholar 

  • Révész L, Modig H (1965) Cysteamine-induced increase of cellular glutathione-level: a new hypothesis of the radioprotective mechanism. Nature 207: 430–431

    Google Scholar 

  • Roberts JC, Francetic DJ, Zera RT (1990) L-Cysteine prodrug protects against cyclophosphamide urotoxicity without compromising therapeutic activity. Cancer Chemother Pharmacol 28: 166–170

    Google Scholar 

  • Russo A, Mitchell JB, Finkelstein E, DeGraff WG, Spiro IJ, Gamson J (1985) The effects of cellular glutathione elevation on the oxygen enhancement ratio. Radiat Res 103: 232–239

    Google Scholar 

  • Sastry KSR, Rao DV (1986) Biological damage caused by Auger cascades. Lancet i: 858–859

    Google Scholar 

  • Schor NF, Siuda JF, Lomis TJ, Cheng B (1990) Structural studies on the inactivation of gamma-glutamylcysteine synthetase by the disulphide analogues of radioprotective cysteamine derivatives. Biochem J 267: 291–296

    Google Scholar 

  • Shaw SM (1990) Radiation: Still glowing in medicine. Am J Pharm Ed 54: 175–178

    Google Scholar 

  • Shore RE (1990) Occupational radiation studies: Status, problems, and prospects. Health Phys 59: 63–68

    Google Scholar 

  • Sigdestad CP, Guilford W, Perrin J, Grdina DJ (1988) Cell cycle redistribution of cultured cells after treatment with chemical radiation protectors. Cell Tissue Kinet 21: 193–200

    Google Scholar 

  • Sodicoff M, Lamperti, A, Ziskin MC (1990) Transdermal absorption of radioprotectors using permeation-enhancing vehicles. Radiat Res 121: 212–219

    Google Scholar 

  • Soupart P (1962) Free amino acids of blood and urine in the human. In: Holden T (ed) Amino acid pools. Elsevier, New York, pp 220–262

    Google Scholar 

  • Srinivasan MN, Sarin RC, Basu SK (1989) Protection to testicular activity by a combination of 5-hydroxy L-tryptophan with a thiol compound in whole body gamma irradiated rats. Indian J Exp Biol 27: 640–643

    Google Scholar 

  • Sutherland RM (ed) (1982) Conference on chemical modifiers: Radiation and cytotoxic drugs. Int J Radiat Oncol Biol Phys 8: 323–809

  • Sweeney TR (1979) A survey of compounds from the antiradiation drug development program of the U.S. Army Medical Research and Development Command. Walter Reed Army Institute of Research, Washington, DC

    Google Scholar 

  • Tamba M (1989) Role of thiols in radioprotection: Radiation chemical aspects. Z Naturforsch 44c: 857–862

    Google Scholar 

  • Terol A, Fernandez J-P, Robbe Y, Chapat J-P, Granger R, Fatome M, Andrieu L, Sentenac-Roumanou H (1978a) Recherche d'agents radioprotecteurs dérivés de la phényl-2 thiazolidine. Eur J Med Chem 13: 149–151

    Google Scholar 

  • Terol A, Fernandez J-P, Robbe Y, Chapat J-P, Granger R, Sentenac-Roumanou H (1978b) Activité radioprotectrice et cinétique d'hydrolyse de phényl-2 thiazolidines. Eur J Med Chem 13: 153–154

    Google Scholar 

  • Uma Devi P, Prasanna PGS (1990) Radioprotective effect of combinations of WR-2721 and mercaptopropionylglycine on mouse bone marrow chromosomes. Radiat Res 124: 165–170

    Google Scholar 

  • vanAnkeren SC, Milas L, Murray D (1989) Protection of cultured Chinese hamster ovary cells by the aminothiol WR-255591 from the lethal and DNA-damaging effects of fast neutrons. Int J Radiat Oncol Biol Phys 16: 1205–1208

    Google Scholar 

  • van der Schans GP, Groenendijk RH, Lohman PH (1988) Sensitive detection of single-strand breaks in DNA afterin vivo exposure to ionizing radiation to evaluate the effects of protecting agents. Pharmacol Ther 39: 147–148

    Google Scholar 

  • Vaughan ATM, Grdina DJ, Meechan PJ, Milner AE, Gordon DJ (1989) Conformational changes in chromatin structure induced by the radioprotective aminothiol, WR 1065. Br J Cancer 60: 893–896

    Google Scholar 

  • Verhey LJ, Sedlacek R (1983) Determination of the radioprotective effects of topical applications of MEA, WR-2721, andN-acetylcysteine on murine skin. Radiat Res 93: 175–183

    Google Scholar 

  • Viehe HG, Janousek Z, Merenyi R, Stella L (1985) The capto-dative effect. Acc Chem Res 18: 148–154

    Google Scholar 

  • Virsik RP, Harder D (1982) Effect of L-cysteine on the dose-effect relationship for chromosome aberrations in irradiation human lymphocytes. Int J Radiat Biol 42: 211–214

    Google Scholar 

  • Vos O, Roos-Verhey WSD (1988) Radioprotection by glutathione esters and cysteamine in normal and glutathione-depleted mammalian cells. Int J Radiat Biol 53: 273–281

    Google Scholar 

  • Walker RI (1988a) Acute radiation injuries. Pharmacol Ther 39: 9–12

    Google Scholar 

  • Walker RI (1988b) Requirements of radioprotectors for military and emergency needs. Pharmacol Ther 39: 13–20

    Google Scholar 

  • Walsh D (1897) Traumatism from Roentgen ray exposure. Br Med J 2: 272–273

    Google Scholar 

  • Ward JF (1988) DNA damage produced by ionizing radiation in mammalian cells: Identities, mechanisms of formation and repairability. Prog Nucl Acids Mol Biol 35: 95–125

    Google Scholar 

  • Ward WF, Molteni A, Ts'ao C-H, Solliday NH (1984) Radiation injury in rat lung. IV. Modification by D-penicillamine. Radiat Res 98: 397–406

    Google Scholar 

  • Ward WF, Shih-Hoellwarth A, Johnson PM (1980) Survival of penicillamine-treated mice following whole-body irradiation. Radiat Res 81: 131–137

    Google Scholar 

  • Ward WF, Shih-Hoellwarth A, Tuttle RD (1983) Collagen accumulation in irradiated rat lung: Modification by D-penicillamine. Radiol 146: 533–537

    Google Scholar 

  • Wardman P (1990) Thiol reactivity towards drugs and radicals: Some implications in the radiotherapy and chemotherapy of cancer. In: Chatgilialoglu C, Asmus K-D (eds) Sulfurcentered reactive intermediates in chemistry and biology. Plenum Press, New York, pp 415–427

    Google Scholar 

  • Watanabe H, Kamikawa M, Nakagawa Y, Takahashi T, Ito A (1988) The effects of ranitidine and cysteamine on intestinal metaplasia induced by X-irradiation in rats. Acta Pathol Jpn 38: 1285–1296

    Google Scholar 

  • Weiss JF, Simic MG (eds) (1988) Perspectives in radioprotection. Pharmacol Ther 39: 1–407

  • Wellner VP, Anderson ME, Puri RV, Jensen GL, Meister A (1984) Radioprotection by glutathione ester: Transport of glutathione ester into human lymphoid cells and fibroblasts. Proc Natl Acad Sci USA 81: 4732–4735

    Google Scholar 

  • Windmeuller HG (1982) Glutamine utilization by the small intestine. Adv Enzymol 53: 202–231

    Google Scholar 

  • Yuhas JM (1970) Biological factors affecting the radioprotective efficiency of S-2-(3-aminopropylamino)ethyl phosphorothioic acid (WR 2721). LD50(30) doses. Radiat Res 44: 621–628

    Google Scholar 

  • Yuhas JM, Culo F (1980) Selective inhibition of the nephrotoxicity ofcis-platinum without altering its antitumor effectiveness. Cancer Treat Rep 64: 57–64

    Google Scholar 

  • Yuhas JM, Spellman JM, Culo F (1980) The role of WR-2721 in radiotherapy and/or chemotherapy. In: Brady LW (ed) Radiation sensitizers: Their use in the clinical management of cancer. Masson, New York, pp 303–308

    Google Scholar 

  • Yuhas JM, Storer JB (1969) Differential chemoprotection of normal and malignant tissues. J Natl Cancer Inst 42: 331–335

    Google Scholar 

  • Ziegler DM, Poulsen LL, Richerson RB (1983) Oxidative metabolism of sulfur-containing radioprotective agents. In: Nygaard OF, Simic MG (eds) Radioprotectors and anticarcinogens. Academic Press, New York, pp 191–202

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, J.C. Amino acids and their derivatives as radioprotective agents. Amino Acids 3, 25–52 (1992). https://doi.org/10.1007/BF00806007

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00806007

Keywords

Navigation