Skip to main content
Log in

The significance of tryptophan in human nutrition

  • Minireview Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Summary

Aside from its role as one of the limiting essential amino acids in protein metabolism, tryptophan (TRP) serves as precursor for the synthesis of the neurotransmitters serotonin and tryptamine as well as for the synthesis of the antipellagra vitamin nicotinic acid and the epiphyseal hormone melatonin.

By involvement in so manifold pathways, TRP and its metabolites regulate neurobehavioral effects such as appetite, sleeping-waking-rhythm and pain perception. TRP is the only amino acid which binds to serum albumin to a high degree. Its transport through cell membranes is competetrvely inhibited by large neutral amino acids (NAA). The TRP/NAA ratio in plasma is essential for the TRP availability and thus for the serotonin synthesis in the brain.

Due to its high TRP-concentration, human milk protein provides optimal conditions for the availability of the neurotransmitter serotonin. Low protein cow's milk-based infant formulas supplemented withα-lactalbumin — a whey protein fraction containing 5.8% TRP — present themselves as a new generation of formulas, with an amino acid pattern different from the currently used protein mixtures of adapted formulas, resembling that of human milk to a much higher degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfieri AB, Cubeddu LX (1994) Effects of inhibition of serotonin synthesis on 5-hydroxyindoleacetic acid excretion in healthy subjects. J Clin Pharmacol 34: 153–157

    Google Scholar 

  • Anderson GH, Johnson J (1983) Nutrient control of brain neurotransmitter synthesis and function. Can J Physiol Pharmacol 61: 271–281

    Google Scholar 

  • Auerbach S, Lipton P (1982) Vasopressin augments depolarization-induced release and synthesis of serotonin in hippocampal slices. J Neurosci 2: 477–482

    Google Scholar 

  • Barr LC, Goodman WK, McDougle CJ, Delgado PL, Heninger GR, Charney DS, Price LH (1994) Tryptophan depletion in patients with obsessive-compulsive disorder who respond to serotonin reuptake inhibitors. Arch Gen Psychiatry 51: 309–317

    Google Scholar 

  • Benedetti F, Moja EA (1993) Failure of a tryptophan-free amino acid mixture to modify sexual behavior in the female rat. Physiol Behav 54: 1235–1237

    Google Scholar 

  • Boehles HJ (1991) Ernährungsstörungen im Kindesalter. Wiss. Verlagsgesellschaft, Stuttgart, S 352

  • Broderick PA, Jacoby JH (1988) Diabetes-related changes in L-tryptophan-induced release of striatal biogenic amines. Diabetes 37: 956–960

    Google Scholar 

  • Carboni E, Cadoni C, Tanda GL, DiChiara G (1989) Calcium-dependent, tetradotoxin-sensitive stimulation of cortical serotonin release after a tryptophan load. J Neurochem 53: 976–978

    Google Scholar 

  • Carr L, Ruther E, Berg PA, Lehnert H (1994) Eosinophilia-myalgia syndrome in Germany: an epidemiologic review. Mayo Clin Proc 69: 620–625

    Google Scholar 

  • Collu R, Fraschni F, Bisconti P, Martini L (1972) Adrenergic and serotoninergic control of growth hormone secretion in adult male rats. Endocrinology 90: 1231–1237

    Google Scholar 

  • Cooper JR, Bloom FE, Roth RH (1986) Catecholamines. II. CNS aspects. In: Cooper JR, Bloom FE, Roth RH (eds) The biochemical basis of neuropharmacology. Oxford University Press, New York

    Google Scholar 

  • DeSimoni MG, Sokola A, Fodritto F, DalToso G, Algeri S (1987) Functional meaning of tryptophan-induced increase of 5-HT metabolism as clarified by in vivo voltametry. Brain Res 411: 89–94

    Google Scholar 

  • Dickinson JC, Rosenblum H, Hamilton PB (1965) Ion exchange chromatography of the free amino acids in the plasma of the newborn infant. Pediatrics 36: 2–13

    Google Scholar 

  • Eccleston EG, Ashcroft GW, Crawford TBB (1965) 5-Hydroxyindole metabolism in rat brain: a study of intermediate metabolism using the technique of tryptophan loading, II. J Neurochem 12: 493–503

    Google Scholar 

  • Eccleston EG (1973) A method for the estimation of free and total acid-soluble plasma tryptophan using an ultrafiltration technique. Clin Chim Acta 48: 269–272

    Google Scholar 

  • Elks ML, Youngblood WW, Kizer JS (1979) Serotonin synthesis and release in brain slices: independence of tryptophan. Brain Res 172: 461–469

    Google Scholar 

  • Fazzolari-Nesci A, Domianello D, Sotera V, Räihä NCR (1992) Tryptophan fortification of adapted formula increases plasma tryptophan concentrations to levels not different from those found in breast-fed infants. J Pediatr Gastroenterol Nutr 14: 456–459

    Google Scholar 

  • Faust V, Baumhauer H, Dietmaier D (1990) Psychopharmaka. Kurzgefaßter Leitfaden für Klinik und Praxis. Ecomed, Landsberg

    Google Scholar 

  • Feldman J, Lebowitz HE (1972) Control of insulin and growth hormone secretion by serotonin and dopamine. Proceedings of the 4th Congress of Endocrinology, Excerpta Medica Foundation Series, 256, p 32

  • Fernstrom JD, Wurtman RJ (1971) Brain serotonin content: physiological dependence on plasma tryptophan levels. Science 173: 149–152

    Google Scholar 

  • Foller RW, Roush BW (1973) Binding of tryptophan to plasma proteins in several species. Comp Biochem Physiol (B) 46: 273–276

    Google Scholar 

  • Food and Nutrition Board. Committee on Amino Acids (1959) Evaluation of protein nutrition. National Academy of Sciences — Nat Res Council Publ 711

  • Food and Nutrition Board (1974) Recommended Dietary Allowances. Washington DC, 8th edn. National Academy of Sciences, pp 37–48

    Google Scholar 

  • Forsum E (1974) Nutritional evaluation of whey protein concentration and their fractions. J Dairy Sci 57: 665–670

    Google Scholar 

  • Friedman M, Finley JW (1975) Evaluation of methods for tryptophan analysis in proteins. Part 1. In: Friedman M (ed) Protein nutritional quality of food and feeds. Marcel Decker Inc, New York, pp 423–452

    Google Scholar 

  • Goodwin GM, Fairburn CG, Cowen PJ (1987) The effects of dieting and weight loss on neuroendocrine responses to tryptophan, clonidine and apomorphine in volunteers. Important implications for neuroendocrine investigations in depression. Arch Gen Psychiatr 44: 952–957

    Google Scholar 

  • Greiling H, Gressner AM (1989) Lehrbuch der Klinischen Chemie und Pathobio — chemie, 2. Aufl. Schattauer, Stuttgart New York, S 501–503

    Google Scholar 

  • Hardeland R, Reiter RJ, Poeggeler B, Tan DX (1993) The significance of the metabolism of the neurohormone melatonin: antioxidative protection and formation of bioactive substances. Neurosci Biobehav Rev 17: 347–357

    Google Scholar 

  • Harzer G (1989) Über die Zusammensetzung von Muttermilch zur Adaptation von Säuglingsnahrungen In: Renner E (Hrsg) Milchwissenschaft, vol 7. Verlag B. Renner, Gießen, S 37

    Google Scholar 

  • Heine W (1994) Qualitative aspects of protein in human milk and formula: amino acid pattern. In: Räihä NCR (ed) Protein metabolism during infancy. Nestlé-Nutrition Workshop Series vol 33, Nestec Ltd. Vevey, Raven Press Ltd. New York, pp 121–132

    Google Scholar 

  • Heine WE, Klein PD, Reeds PJ (1991) The importance of α-lactalbumin in infant nutrition. J Nutr 121: 277–283

    Google Scholar 

  • Heine W, Radke M, Wutzke KD, Peters E (1995) Clinical and biochemical studies with low-protein infant formulas enriched withα-lactalbumin (Submitted for publication)

  • Holt LE jr, György P, Pratt EL, Snyderman SE, Wallace WM (1960) Protein and amino acid requirements in early life. University Press, New York

    Google Scholar 

  • Janas LM, Picciano MF, Hatch TF (1985) Indices of protein metabolism in term infants fed human milk, whey predominant formula, or cow's milk formula. Pediatrics 75: 775–784

    Google Scholar 

  • Janas LM, Picciano MF, Hatch TF (1987) Indices of protein metabolism in term infants fed either human milk or formulas with reduced protein concentration and various whey/casein ratios. J Pediatr 110: 838–848

    Google Scholar 

  • Jarvenpää AL, Räihä NCR, Rassin DK, Gaull GE (1982a) Milk protein quantity and quality in the term infant: I. Metabolic responses and effects on growth. Pediatrics 70: 214–220

    Google Scholar 

  • Jarvenpää AL, Rassin DK, Räihä NCR, Gaull GE (1982b) Milk protein quantity and quality in the term infant. II. Effects on acidic and neutral amino acids. Pediatrics 70: 221–230

    Google Scholar 

  • Jürgens P (1985) Zur Korrelation zwischen extrazellulärer Aminosäurenhomöostase und Deckung des Aminosäurenbedarfs. In: Kleinberger G, Bürger U (Hrsg) Aminosäuren-Transferlösungen. Klinische Ernährung, vol 15. Zuckschwerdt, München Bern Wien, S 186–200

    Google Scholar 

  • Jürgens P (1986) Zum Aminosäurenbedarf Früh- und Neugeborener sowie junger Säuglinge bei enteraler und parenteraler Ernährung. In: Dölp R, Löhlein D (Hrsg) Aktuelle Entwicklung und Standard der künstlichen Ernährung. Karger, Basel München Paris, S 14–53

    Google Scholar 

  • Knapp A (1962) Über eine erbliche Störung im Tryptophanstoffwechsel in Abhängigkeit von der Vitamin B6-Zufuhr. Z Menschl Vererb Konstit Lehre 36: 258–267

    Google Scholar 

  • Komrower GM, Wilson V, Clamp R, Westall RG (1964) Hydroxykynuremia. Arch Dis Child 39: 250–256

    Google Scholar 

  • Körbel IM (1984) Untersuchungen über die Tryptophankonzentration im Plasma von Kindern und Erwachsenen. Promotion, Universität Düsseldorf

  • Lancranjan I, Wirz-Justice A, Puhringer W, PelDozo E (1977) Effect of 1-5-hydroxy-tryptophan infusion on growth hormone and prolactin secretion in man. J Clin Endocrinol Metabol 45: 588–593

    Google Scholar 

  • Maher TJ (1984) Plasma branched chain amino acids as regulator of brain neurotransmitters. In: Adibi SA, Fekl W, Langenbeck U, Schauder P (eds) Branched chain amino and keto acids in health and disease. Karger, Basel, pp 242–259

    Google Scholar 

  • Maire JC (1994) Personal communication

  • Marsden CA, Conti J, Strope E, Curzon G, Adams RN (1979) Monitoring 5-hydroxy-tryptamine release in the brain of the freely moving unanaesthesized rat usingin vivo voltametry. Brain Res 171: 85–99

    Google Scholar 

  • Miller HL, Delgado PL, Salomon RM, Licinio J, Barr LC. Charney DS (1992) Acute tryptophan depletion: a method of studying antidepressant action. J Clin Psychiatry 53 [Suppl]: 28–35

    Google Scholar 

  • Moir ATB, Eccleston D (1968) The effects of precursor loading in the cerebral metabolism of 5-hydroxyindoles. J Neurochem 15: 1093–1108

    Google Scholar 

  • Mutschler E (1991) Arzneimittelwirkungen. Lehrbuch der Pharmakologie und Toxikologie, 6. Aufl. Wiss. Verlagsgesellschaft, Stuttgart

    Google Scholar 

  • Nielsen HK, Hurrell RF (1985) Tryptophan determination of food proteins by HPLC after alkaline hydrolysis. J Sci Food Agr 36: 893–907

    Google Scholar 

  • Ng LT, Anderson GH (1992) Route of administration of tryptophan and tyrosine affects short-term food intake and plasma and brain amino acid concentrations in rats. J Nutr 122: 283–293

    Google Scholar 

  • Pascoe M (1993) Huntington's disease and low tryptophan diet. Med Hypotheses 41: 325–326

    Google Scholar 

  • Pohlandt F (1975) Zur Vermeidung von Aminosäurenimbalanzen bei Neugeborenen unter parenteraler Ernährung. Monatsschr Kinderheilkd 123: 448–450

    Google Scholar 

  • Pollet P, Leathwood PD (1983) The influence of tryptophan on sleep in man. Int J Vitam Nutr Res 2: 53–58

    Google Scholar 

  • Price JM, Yess N, Brown RR, Johnson SAM (1967) Tryptophan metabolism. A hitherto unreported abnormality occurring in a family. Arch Dermatol 95: 462–472

    Google Scholar 

  • Reiter RJ (1993) The melatonin rhythm: both a clock and a calendar. Experientia 49: 654–664

    Google Scholar 

  • Reiter RJ, Tan DX, Poeggeler B, Menendez-Pelaez A, Chen LD, Saarela S (1994) Melatonin as a free radical scavenger: implications for aging and age-related diseases. Ann NY Acad Sci 719: 1–12

    Google Scholar 

  • Saavedra JM, Palkovits M, Brownstein M, Axelrod J (1974) Serotonin distribution in the nuclei of the rat hypothalamus and preoptic region. Brain Res 77: 157–165

    Google Scholar 

  • Schaechter JD, Wurtman RJ (1990) Serotonin release varies with brain tryptophan levels. Brain Res 532: 203–210

    Google Scholar 

  • Sidransky H, Verney E, Cosgrove JW (1992) Competitive studies relating to tryptophan binding to rat hepatic nuclear envelopes as a sensitive assay for unknown compounds. Toxicology 76: 89–100

    Google Scholar 

  • Siegenthaler W (1987) Klinische Pathophysiologie, 6. Aufl. Thieme, Stuttgart New York, S 149, 1161

    Google Scholar 

  • Shimatzu A, Kato Y, Ohta H, Tojo K, Kabayama Y, Inoue T, Imura H (1985) Involvement of vasoactive intestinal polypeptide in serotonergic stimulation of prolactin secretion in rats. In: McLeod RH, Thorner MD, Scapagnim U (eds) Prolactin. Basic and clinical correlates. Fidia Research Series, Liviana Press, Padova, p 73

    Google Scholar 

  • Snyderman SE (1974) In: Nyhan WL (ed) Heritable disorders of amino acid metabolism. John Wiley and Son, New York, pp 641–651

    Google Scholar 

  • Snyderman SE (1986) Cited in: Dölp R, Löhlein D (Hrsg) Aktuelle Entwicklung und Standard der künstlichen Ernährung. Karger, Basel München Paris, S 42

    Google Scholar 

  • Snyderman SE, Boyer A, Phansalker SV, Holt LE (1961) The essential amino acid requirements of infants: tryptophan. Am J Dis Child 102: 163–167

    Google Scholar 

  • Tada K, Ito H, Arakawa T, Tohoku J (1963) Congenital tryptophanuria with dwarfism. J Exp Med 80: 118–134

    Google Scholar 

  • Ternaux JP, Boireau A, Bourgoin S, Hamon M, Hery F, Glowinski J (1976) In vivo release of 5-HT in the lateral ventricle of the rat: effects of 5-hydroxytryptophan and tryptophan. Brain Res 101: 533–548

    Google Scholar 

  • Tricklebank MD, Pickard FJ, DeSouza SW (1979) Free and bound tryptophan in human plasma during the perinatal period. Acta Paediatr Scand 68: 199–204

    Google Scholar 

  • Trulson ME (1985) Dietary tryptophan does not alter the function of brain serotonin neurons. Life Sci 37: 1067–1072

    Google Scholar 

  • Widdowson EM, Southgate DAT, Hey EN (1979) Body composition of the fetus and infant. In: Visser HKA (ed) Nutriton and metabolism of the fetus and infant. Martinus Nijhoff, Boston, pp 167–177

    Google Scholar 

  • Williams AP, Hewitt D, Buttery PJ (1982) A collaborative study on the determination in feeding stuffs. J Sci Food Agr 33: 860–865

    Google Scholar 

  • Wissenschaftliche Tabellen Geigy (1977), 8. Aufl., S 259

  • Wurtman RJ (1982) Nutrients that modify brain function. Sci Am 246: 50–59

    Google Scholar 

  • Wurtman RJ (1983) Behavioral effects of nutrients. Lancet I: 1145–1147

    Google Scholar 

  • Wurtman RJ (1988) Effects of dietary amino acids, carbohydrates, and choline on neurotransmitter synthesis. Mt Sinai J Med 55: 75–86

    Google Scholar 

  • Yamamoto H, Egawa B, Horiguchi K, Kaku A, Yamada K (1992) Changes in CSF tryptophan metabolite levels in infantile spasms. No To Hattatsu 24: 530–535

    Google Scholar 

  • Yan D, Urano T, Pietraszek MH, Shimoyama I, Uemura K, Kojima Y, Sakakibara K, Serizawa K, Takada Y, Takada A (1993) Correlation between serotonergic measures in cerebrospinal fluid and blood of subhuman primate. Life Sci 52: 745–749

    Google Scholar 

  • Yannicelli S, Rohr F, Warman ML (1994) Glutaric acidemia type I is a rare, autosomal recessive, inborn error of lysine and tryptophan metabolism. J Am Diet Assoc 94: 183–188

    Google Scholar 

  • Yokogoshi H, Iwata T, Ishida K, Yoshida A (1987) Effects of amino acid supplementation to low protein diet on brain and plasma levels of tryptophan and brain 5-hydroxyindoles in rats. J Nutr 117: 42–47

    Google Scholar 

  • Zimmermann RC, McDougle CJ, Schmumacher M, Olcese J, Heninger GR, Price LH (1993) Urinary 6-hydroxymelatonin sulfate as a measure of melatonin secretion during acute tryptophan depletion. Psychoneuroendocrinology 18: 567–578

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heine, W., Radke, M. & Wutzke, K.D. The significance of tryptophan in human nutrition. Amino Acids 9, 91–205 (1995). https://doi.org/10.1007/BF00805951

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00805951

Keywords

Navigation