Amino Acids

, Volume 2, Issue 3, pp 271–284 | Cite as

Liquid chromatographic determination of D-amino acids in cheese and cow milk. Implication of starter cultures, amino acid racemases, and rumen microorganisms on formation, and nutritional considerations

  • H. Brückner
  • P. Jaek
  • M. Langer
  • H. Godel


Free L- and D-amino acids (L-AA, D-AA) were isolated from an Appenzeller cheese, from raw milk, and from an ethanolic extract as well as a total hydrolysate of cow's rumen microorganisms, and their relative amounts were determined by reversed-phase high-performance liquid chromatography after derivatization witho-phthaldialdehyde together withN-isobutyryl-L-(or D)-cysteine. D-Ala, D-Asp and D-Glu were found, among other D-AA in all cases and a microbial origin of free D-AA found in cheese and milk was rationalized. From the results, and taking other findings of the occurrence of D-AA in food and beverages into account, the highest intake of D-AA is to be expected from the consumption of ripened cheeses. From the presence of D-amino acid oxidases in human kidney, liver, and brain and from reports on the intravenous administration of racemic AA to humans and their metabolisation it is concluded that intake of free D-AA found in food is no threat for human beings.


Amino acids High-performance liquid chromatography o-Phthaldialdehyde N-Isobutyryl-cysteine D-Amino acids Food Toxicology Nutrition D-Amino acid oxidase Microorganisms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams E (1972) Racemases and epimerases. In: Boyer PD (ed) The enzymes, vol 6. Academic Press, New York, pp 479–507Google Scholar
  2. Armani E, Barazzoni L, Dossena A, Marchelli R (1988) J Chromatogr 441: 287–298Google Scholar
  3. Bansi HW, Jürgens P, Müller G, Rostin M (1964) Klin Wochenschr 42: 332–352Google Scholar
  4. Barker RF, Hopkinson DA (1977) Ann Hum Genet Lond 41: 27–42Google Scholar
  5. Bhattacharyya SR, Banerjee AB (1974) Folia Microbiol 19: 43–50Google Scholar
  6. Bottazzi V (1988) Biochimie 70: 303–315Google Scholar
  7. Brückner H, Hausch M (1989) J High Resol Chromatogr 12: 680–684Google Scholar
  8. Brückner H, Hausch M (1989a) Chromatographia 28: 487–492Google Scholar
  9. Brückner H, Hausch M (1990) Milchwissenschaft 45: 357–360Google Scholar
  10. Brückner H, Hausch M (1990a) Milchwissenschaft 45: 421–425Google Scholar
  11. Brückner H, Hausch M (1990b) D-Amino acids as ubiquitous constitutents in fermented food. In: Lubec G, Rosenthal GA (eds) Amino acids: chemistry, biology and medicine. Escom Science, Leiden, pp 1172–1182Google Scholar
  12. Brückner H, Lüpke M (1991) Chromatographia 31: 123–128Google Scholar
  13. Brückner H, Wittner R, Godel H (1991) Chromatographia 32: 383–388Google Scholar
  14. Cherken A, Davis JL, Garman MW (1978) Parmacol Biochem Behav 8: 623–625Google Scholar
  15. Corrigan JJ (1969) Science 164: 142–149Google Scholar
  16. Cousins CM, Bramley AJ (1981) The microbiology of raw milk. In: Robinson RK (ed) Dairy microbiology, vol 1. Applied Science Publishers, London, pp 119–163Google Scholar
  17. D'Aniello A, Giuditta A (1979) Comp Biochem Physiol 66B: 319–322Google Scholar
  18. Einarsson S, Josefsson B, Möller P, Sanchez D (1987) Anal Chem 59: 1191–1195Google Scholar
  19. Felbeck H, Wiley S (1987) Biol Bull 173: 252–259Google Scholar
  20. Friedman M, Gumbmann R (1989) Dietary significance of D-amino acids. In: Friedman M (ed) Absorption and utilization of amino acids, vol 2. CRC Press, Boca Raton, FA, pp 173–190Google Scholar
  21. Ganote CE, Peterson DR, Carone FA (1974) Am J Pathol 77: 269–276Google Scholar
  22. Gübitz G, Juffmann F, Jellenz W (1982) Chromatographia 16: 103–106Google Scholar
  23. Hare PE, Gil-Av E (1979) Science 204: 1226–1228Google Scholar
  24. Heine W, Drescher U (1975) Dtsch Gesundheitswesen 30: 1563–1566Google Scholar
  25. Heine W, Wutzke K, Drescher U (1983) Clin Nutr 2: 31–35Google Scholar
  26. Hofsommer HJ, Klein I, Grüning J, Höpker HR (1989) Flüssig Obst 56: 646–651Google Scholar
  27. Holmes CW, Wilson GF (1987) Milk production from pasture. Butterworths, Wellington, New Zealand, pp 88–106Google Scholar
  28. Hungate R (1966) The Rumen and its microbes. Academic Press, New YorkGoogle Scholar
  29. Kampel D, Kupferschmidt R, Lubec G (1991) Toxicity of D-proline. In: Lubec G, Rosenthal GA (eds) Amino acids: chemistry, biology and medicine. Escom Science, Leiden, pp 1164–1171Google Scholar
  30. Konno R, Yasumura Y (1981) Zoological Magazine Jpn 90: 368–373Google Scholar
  31. Krebs HA (1948) Biochem Soc Symp Camb 1: 2–19Google Scholar
  32. Langer M, Wittner R, Jaek P, Godel H, Brückner H (1991) Determination of amino acid enantiomers in food and beverages by HPLC and GC. In: Baltes WJ, Eklund T, Fenwick R, Pfannhauser W, Ruiter A, Thier HP (eds) Strategies for food quality control and analytical methods in Europe. Proceedings of Europ Food Chem VI, Hamburg, September 22–26, 1991. Behr's Verlag, Hamburg, pp 385–390Google Scholar
  33. Liardon R, Hurrell RF (1983) J Agric Food Chem 31: 432–437Google Scholar
  34. Lindner W (1988) Indirect separation of enantiomers by liquid chromatography. In: Zief M, Crane LJ (eds) Chromatographic separations. Dekker, New York Basel, pp 91–129Google Scholar
  35. Man EH, Bada JL (1987) Ann Rev Nutr 7: 209–225Google Scholar
  36. Manning JM, Moore S (1968) J Biol Chem 243: 5591–5597Google Scholar
  37. Masters PM, Friedman M (1980) Am Chem Soc Symp Ser 123: 165–194Google Scholar
  38. Matsushima O, Katayama H, Yamada K, Kado Y (1984) Mar Biol Lett 5: 217–225Google Scholar
  39. Nagata Y, Akino T, Ohno K, Kataoka Y, Ueda T, Sakurai T, Shiroshita K-I, Yasuda T (1987) Clin Sci 73: 105–108Google Scholar
  40. Neims AH, Zieverink WD, Smilack JD (1966) J Neurochem 13: 163–168Google Scholar
  41. Palla G, Marchelli R, Dossena A, Casnati G (1989) J Chromatogr 475: 45–53Google Scholar
  42. Preston RL (1987) Comp Biochem Physiol 87B: 55–62Google Scholar
  43. Robinson T (1976) Life Sci 19: 1097–1102Google Scholar
  44. Schleifer KH, Kandler O (1972) Bact Rev 36: 407–477Google Scholar
  45. Scott R (1986) Cheesemaking practice, 2nd edn., Elsevier, LondonGoogle Scholar
  46. Tipper DJ, Wright A (1979) The structure and biosynthesis of bacterial cell walls. In: Sokatch JR, Ornston LN (eds) The bacteria, vol. 7. Academic Press, New York, pp 291–426Google Scholar
  47. Tokuhisa S, Saisu K, Naruse K, Yoshikawa H, Baba S (1981) Chem Pharm Bull Jpn 29: 514–518Google Scholar
  48. Tovar RL, Schwass DE (1983) Am Chem Soc Symp Ser 234: 169–185Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • H. Brückner
    • 1
  • P. Jaek
    • 1
  • M. Langer
    • 1
    • 3
  • H. Godel
    • 2
  1. 1.Institute of Food TechnologyUniversity of HohenheimStuttgart 70Germany
  2. 2.Hewlett-Packard GmbHWaldbronn Analytical DivisionWaldbronnGermany
  3. 3.Untersuchungsinstitut des Sanitätsdienstes der BundeswehrStuttgartGermany

Personalised recommendations