Skip to main content
Log in

Liquid chromatographic determination of D-amino acids in cheese and cow milk. Implication of starter cultures, amino acid racemases, and rumen microorganisms on formation, and nutritional considerations

  • Published:
Amino Acids Aims and scope Submit manuscript

Summary

Free L- and D-amino acids (L-AA, D-AA) were isolated from an Appenzeller cheese, from raw milk, and from an ethanolic extract as well as a total hydrolysate of cow's rumen microorganisms, and their relative amounts were determined by reversed-phase high-performance liquid chromatography after derivatization witho-phthaldialdehyde together withN-isobutyryl-L-(or D)-cysteine. D-Ala, D-Asp and D-Glu were found, among other D-AA in all cases and a microbial origin of free D-AA found in cheese and milk was rationalized. From the results, and taking other findings of the occurrence of D-AA in food and beverages into account, the highest intake of D-AA is to be expected from the consumption of ripened cheeses. From the presence of D-amino acid oxidases in human kidney, liver, and brain and from reports on the intravenous administration of racemic AA to humans and their metabolisation it is concluded that intake of free D-AA found in food is no threat for human beings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams E (1972) Racemases and epimerases. In: Boyer PD (ed) The enzymes, vol 6. Academic Press, New York, pp 479–507

    Google Scholar 

  • Armani E, Barazzoni L, Dossena A, Marchelli R (1988) J Chromatogr 441: 287–298

    Google Scholar 

  • Bansi HW, Jürgens P, Müller G, Rostin M (1964) Klin Wochenschr 42: 332–352

    Google Scholar 

  • Barker RF, Hopkinson DA (1977) Ann Hum Genet Lond 41: 27–42

    Google Scholar 

  • Bhattacharyya SR, Banerjee AB (1974) Folia Microbiol 19: 43–50

    Google Scholar 

  • Bottazzi V (1988) Biochimie 70: 303–315

    Google Scholar 

  • Brückner H, Hausch M (1989) J High Resol Chromatogr 12: 680–684

    Google Scholar 

  • Brückner H, Hausch M (1989a) Chromatographia 28: 487–492

    Google Scholar 

  • Brückner H, Hausch M (1990) Milchwissenschaft 45: 357–360

    Google Scholar 

  • Brückner H, Hausch M (1990a) Milchwissenschaft 45: 421–425

    Google Scholar 

  • Brückner H, Hausch M (1990b) D-Amino acids as ubiquitous constitutents in fermented food. In: Lubec G, Rosenthal GA (eds) Amino acids: chemistry, biology and medicine. Escom Science, Leiden, pp 1172–1182

    Google Scholar 

  • Brückner H, Lüpke M (1991) Chromatographia 31: 123–128

    Google Scholar 

  • Brückner H, Wittner R, Godel H (1991) Chromatographia 32: 383–388

    Google Scholar 

  • Cherken A, Davis JL, Garman MW (1978) Parmacol Biochem Behav 8: 623–625

    Google Scholar 

  • Corrigan JJ (1969) Science 164: 142–149

    Google Scholar 

  • Cousins CM, Bramley AJ (1981) The microbiology of raw milk. In: Robinson RK (ed) Dairy microbiology, vol 1. Applied Science Publishers, London, pp 119–163

    Google Scholar 

  • D'Aniello A, Giuditta A (1979) Comp Biochem Physiol 66B: 319–322

    Google Scholar 

  • Einarsson S, Josefsson B, Möller P, Sanchez D (1987) Anal Chem 59: 1191–1195

    Google Scholar 

  • Felbeck H, Wiley S (1987) Biol Bull 173: 252–259

    Google Scholar 

  • Friedman M, Gumbmann R (1989) Dietary significance of D-amino acids. In: Friedman M (ed) Absorption and utilization of amino acids, vol 2. CRC Press, Boca Raton, FA, pp 173–190

    Google Scholar 

  • Ganote CE, Peterson DR, Carone FA (1974) Am J Pathol 77: 269–276

    Google Scholar 

  • Gübitz G, Juffmann F, Jellenz W (1982) Chromatographia 16: 103–106

    Google Scholar 

  • Hare PE, Gil-Av E (1979) Science 204: 1226–1228

    Google Scholar 

  • Heine W, Drescher U (1975) Dtsch Gesundheitswesen 30: 1563–1566

    Google Scholar 

  • Heine W, Wutzke K, Drescher U (1983) Clin Nutr 2: 31–35

    Google Scholar 

  • Hofsommer HJ, Klein I, Grüning J, Höpker HR (1989) Flüssig Obst 56: 646–651

    Google Scholar 

  • Holmes CW, Wilson GF (1987) Milk production from pasture. Butterworths, Wellington, New Zealand, pp 88–106

    Google Scholar 

  • Hungate R (1966) The Rumen and its microbes. Academic Press, New York

    Google Scholar 

  • Kampel D, Kupferschmidt R, Lubec G (1991) Toxicity of D-proline. In: Lubec G, Rosenthal GA (eds) Amino acids: chemistry, biology and medicine. Escom Science, Leiden, pp 1164–1171

    Google Scholar 

  • Konno R, Yasumura Y (1981) Zoological Magazine Jpn 90: 368–373

    Google Scholar 

  • Krebs HA (1948) Biochem Soc Symp Camb 1: 2–19

    Google Scholar 

  • Langer M, Wittner R, Jaek P, Godel H, Brückner H (1991) Determination of amino acid enantiomers in food and beverages by HPLC and GC. In: Baltes WJ, Eklund T, Fenwick R, Pfannhauser W, Ruiter A, Thier HP (eds) Strategies for food quality control and analytical methods in Europe. Proceedings of Europ Food Chem VI, Hamburg, September 22–26, 1991. Behr's Verlag, Hamburg, pp 385–390

    Google Scholar 

  • Liardon R, Hurrell RF (1983) J Agric Food Chem 31: 432–437

    Google Scholar 

  • Lindner W (1988) Indirect separation of enantiomers by liquid chromatography. In: Zief M, Crane LJ (eds) Chromatographic separations. Dekker, New York Basel, pp 91–129

    Google Scholar 

  • Man EH, Bada JL (1987) Ann Rev Nutr 7: 209–225

    Google Scholar 

  • Manning JM, Moore S (1968) J Biol Chem 243: 5591–5597

    Google Scholar 

  • Masters PM, Friedman M (1980) Am Chem Soc Symp Ser 123: 165–194

    Google Scholar 

  • Matsushima O, Katayama H, Yamada K, Kado Y (1984) Mar Biol Lett 5: 217–225

    Google Scholar 

  • Nagata Y, Akino T, Ohno K, Kataoka Y, Ueda T, Sakurai T, Shiroshita K-I, Yasuda T (1987) Clin Sci 73: 105–108

    Google Scholar 

  • Neims AH, Zieverink WD, Smilack JD (1966) J Neurochem 13: 163–168

    Google Scholar 

  • Palla G, Marchelli R, Dossena A, Casnati G (1989) J Chromatogr 475: 45–53

    Google Scholar 

  • Preston RL (1987) Comp Biochem Physiol 87B: 55–62

    Google Scholar 

  • Robinson T (1976) Life Sci 19: 1097–1102

    Google Scholar 

  • Schleifer KH, Kandler O (1972) Bact Rev 36: 407–477

    Google Scholar 

  • Scott R (1986) Cheesemaking practice, 2nd edn., Elsevier, London

    Google Scholar 

  • Tipper DJ, Wright A (1979) The structure and biosynthesis of bacterial cell walls. In: Sokatch JR, Ornston LN (eds) The bacteria, vol. 7. Academic Press, New York, pp 291–426

    Google Scholar 

  • Tokuhisa S, Saisu K, Naruse K, Yoshikawa H, Baba S (1981) Chem Pharm Bull Jpn 29: 514–518

    Google Scholar 

  • Tovar RL, Schwass DE (1983) Am Chem Soc Symp Ser 234: 169–185

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Ernst Bayer, University of Tübingen, on the occasion of his 65th anniversary.

Presented in part at the “2nd International Congress on Amino Acids and Analogues”, Vienna, August 5–9, 1991, and at “Euro Food Chem VI”, September 22–26, 1991, Hamburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brückner, H., Jaek, P., Langer, M. et al. Liquid chromatographic determination of D-amino acids in cheese and cow milk. Implication of starter cultures, amino acid racemases, and rumen microorganisms on formation, and nutritional considerations. Amino Acids 2, 271–284 (1992). https://doi.org/10.1007/BF00805948

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00805948

Keywords

Navigation