Advertisement

Amino Acids

, Volume 2, Issue 3, pp 245–253 | Cite as

Quinolinate-like neurotoxicity produced by aminooxyacetic acid in rat striatum

  • W. A. Turski
  • E. Urbańska
  • M. Sieklucka
  • C. Ikonomidou
Article
  • 30 Downloads

Summary

The endogenous tryptophan metabolite quinolinic acid elicits in rodent brain a pattern of neuronal degeneration which resembles that caused by L-glutamate. Its qualities as a neurotoxic agent raised the hypothesis that quinolinic acid might be involved in the pathogenesis of human neurodegenerative disorders. Kynurenic acid, another endogenous tryptophan metabolite and preferential N-methyl-D-aspartate (NMDA) antagonist, has been shown to block quinolinic acid neurotoxicity. Here we report that microinjections of aminooxyacetic acid (AOAA), an inhibitor of kynurenine transaminase and of other pyridoxal phosphate-dependent enzymes, into the rat striatum produce neuronal damage resembling that caused by quinolinic acid. AOAA-induced striatal lesions can be prevented by kynurenic acid and the selective NMDA antagonist 2-amino-7-phosphonoheptanoic acid. These results suggest that AOAA produces excitotoxic lesions by depleting brain concentrations of kynurenic acid (inhibition of synthetic enzyme) or due to impairment of intracellular energy metabolism (depletion of cell energy resources). The concept of deficient neuroprotection due to metabolic defects might help to clarify the pathogenesis of human neurodegenerative disorders and to develop strategies that may be useful in their treatment.

Keywords

Amino acids Aminooxyacetic acid Neostriatum Kynurenic acid N-Methyl-D-aspartic acid Rat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Olney JW, Ho OL (1970) Nature (London) 227: 609–610Google Scholar
  2. 2.
    Olney JW, Ho OL, Rhee V (1971) Exp Brain Res 14: 61–76Google Scholar
  3. 3.
    Coyle JT, Schwarcz R (1976) Nature (London) 263: 244–246Google Scholar
  4. 4.
    McGeer EG McGeer PL (1976) Nature (London) 263: 517–519Google Scholar
  5. 5.
    Coyle JT, Schwarcz R, Bennet JP, Campochiaro P (1977) Prog Neuropsychopharmacol 1: 13–30Google Scholar
  6. 6.
    Schwarcz R, Foster AC, French ED, Whetsell WO, Köhler C (1984) Life Sci 35: 19–32Google Scholar
  7. 7.
    Novelli A, Reilly JA, Lysko PG, Henneberry RC (1988) Brain Res 451: 205–212Google Scholar
  8. 8.
    Henderson LM, Hirsch HM (1949) J Biol Chem 181: 667–675Google Scholar
  9. 9.
    Schwarcz R, Whetsell WO, Mangano RM (1983) Science 219: 316–318Google Scholar
  10. 10.
    Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB (1986) Nature (London) 321: 168–171Google Scholar
  11. 11.
    Stone TW, Connick JH, Winn P, Hastings MH, English M (1987) In: Bock G, O'Connor M (eds) Selective neuronal death. CIBA Foundation Symp., vol 126. John Wiley, Chichester, pp 204–220Google Scholar
  12. 12.
    Schwarcz R, Whetsell WO, Turski WA (1988) In: Nappi G, Hornykiewicz O, Fariello RG, Agnoli A, Klawans H (eds) Neurodegenerative disorders: the role played by endotoxins and xenobiotics. Raven Press, New York, pp 7–21Google Scholar
  13. 13.
    Späth E (1921) Monatsh Chem 42: 89–95Google Scholar
  14. 14.
    Perkins MN, Stone TW (1982) Brain Res 247: 183–187Google Scholar
  15. 15.
    Foster AC, Vezzani A, French ED, Schwarcz R (1984) Neurosci Lett 48: 273–278Google Scholar
  16. 16.
    Ganong AH, Lanthorn TH, Cotman CW (1983) Brain Res 273: 170–174Google Scholar
  17. 17.
    Herrling PL (1985) Neuroscience 14: 417–426Google Scholar
  18. 18.
    Schwarcz R, Shoulson I (1987) In: Coyle JT (ed) Animal models of dementia: synaptic neurochemical perspective. Alan Liss, New York, pp 39–68Google Scholar
  19. 19.
    Schwarcz R, Speciale C, Turski WA (1989) In: Calne DB (ed) Parkinsonism and aging. Raven Press, New York, pp 97–105Google Scholar
  20. 20.
    Nakamura M, Turski WA, Whetsell WO, Schwarcz R (1987) Soc Neurosci Abstr 13: 1488Google Scholar
  21. 21.
    Turski WA, Nakamura M, Todd WP, Carpenter BK, Whetsell WO, Schwarcz R (1988) Brain Res 454: 164–169Google Scholar
  22. 22.
    Turski WA, Gramsbergen JBP, Traitler H, Schwarcz R (1989) J Neurochem 52: 1629–1636Google Scholar
  23. 23.
    Zeevalk GD, Nicklas WJ (1990) J Pharmacol Exp Ther 253: 1285–1292Google Scholar
  24. 24.
    Turski L, Bressler K, Rettig K-J, Löschmann P-A, Wachtel H (1991) Nature (London) 349: 414–418Google Scholar
  25. 25.
    Schapira AHV, Mann VM, Cooper JM, Dexter D, Daniel SE, Jenner P, Clark JB, Marsden CD (1990) J Neurochem 55: 2142–2145Google Scholar
  26. 26.
    DaVanzo JP, Matthews RJ, Stafford JE (1964) Toxicol Appl Pharmacol 6: 388–395Google Scholar
  27. 27.
    Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, San DiegoGoogle Scholar
  28. 28.
    Fink RP, Heimer L (1967) Brain Res 4: 369–374Google Scholar
  29. 29.
    Lowe IP, Robins E, Eyerman GS (1958) J Neurochem 3: 8–18Google Scholar
  30. 30.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193: 265–275Google Scholar
  31. 31.
    Markwell MAK, Haas SM, Bieber LL, Starr NE (1978) Anal Biochem 87: 206–210Google Scholar
  32. 32.
    McDonald JW, Silverstein FS, Johnston MV (1988) Brain Res 459: 200–203Google Scholar
  33. 33.
    Ikonomidou C, Mosinger JL, Shahid Salles K, Labruyere J, Olney JW (1989) J Neurosci 9: 2809–2818Google Scholar
  34. 34.
    Olney JW, Price MT, Samson L, Labruyere J (1986) Neurosci Lett 65: 65–71Google Scholar
  35. 35.
    Parker WD, Boyson SJ, Luder AS, Parks JK (1990) Neurology 40: 1231–1234Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • W. A. Turski
    • 1
  • E. Urbańska
    • 1
  • M. Sieklucka
    • 1
  • C. Ikonomidou
    • 1
  1. 1.Department of PharmacologyMedical SchoolLublinPoland

Personalised recommendations