Skip to main content

An introduction to the multi-grid method for numerical relativists

Abstract

The multi-grid method, which has made a considerable impact on both theoretical and applied numerical analysis in the past decade, is reviewed within the context of the solution of boundary value problems in 3 + 1 numerical relativity. The basic principles of operation of a multi-grid algorithm are discussed and, with the aid of numerical experiments on exactly soluble model problems, the method is compared to more traditional techniques such as SOR. The results of application of the method to a set of axisymmetric problems for black hole initial data, previously determined by relaxation techniques, are presented.

This is a preview of subscription content, access via your institution.

References

  1. Abramowitz, M., and Stegun, I. A. (1972).Handbook of Mathematical Functions (Dover, New York).

    Google Scholar 

  2. Bowen, J. M., and York, J. W. (1980).Phys. Rev. D 21, 2047.

    Google Scholar 

  3. Brandt, A. (1977).Math. Comput. 31, 333.

    Google Scholar 

  4. Brandt, A. (1977). InNumerical Software III, John Rice, ed. (Academic Press, New York), pp. 277–318.

    Google Scholar 

  5. Brandt, A. (1979). InNumerical Analysis of Singular Perturbation Problems, P. W. Hemker and J. J. Miller, eds. (Academic Press, New York/London), pp. 53–147.

    Google Scholar 

  6. Brandt, A. (1982). InLecture Notes in Mathematics: Multi Grid Methods, Vol. 960, W. Hackbusch and U. Trottenberg, eds. (Springer Verlag, New York).

    Google Scholar 

  7. Choptuik, M. (1982). M.Sc. Thesis (University of British Columbia).

  8. Eppley, K. (1977).Phys. Rev. D 16, 1609.

    Google Scholar 

  9. Evans, C. R., Smarr, L., and Wilson, J. R. (1983). Preprint.

  10. Griffiths, D. F., and Mitchell, A. R. (1980).The Finite Difference Method in Partial Differential Equations (John Wiley, New York).

    Google Scholar 

  11. Mitchell, A. R., and Wait, R. (1977).The Finite Element Method in Partial Differential Equations (John Wiley, New York).

    Google Scholar 

  12. Nakamura, Maeda, T. K., Miyami, S., and Sasaki, M. (1980).Progr. Theor. Phys. 63, 1229.

    Google Scholar 

  13. O. Murchadha N., and York Jr., J. W. (1974).Phys. Rev. D 10, 428.

    Google Scholar 

  14. Piran, T. (1983). InGravitational Radiation, N. Deruelle and T. Piran, eds. (North Holland, New York), pp. 203–256.

    Google Scholar 

  15. Smarr, L. (1979). InSources of Gravitational Radiation, L. Smarr, ed. (Cambridge University Press, Cambridge), pp. 139–159.

    Google Scholar 

  16. Varga, R. S. (1962).Matrix Iterative Analysis (Prentice-Hall, Englewood Cliffs, N.J.).

    Google Scholar 

  17. York Jr., J. W. (1973).J. Math. Phys. 14, 456.

    Google Scholar 

  18. York Jr., J. W. (1979). InSources of Gravitational Radiation. L. Smarr, ed. (Cambridge University Press, Cambridge, pp. 83–126.

    Google Scholar 

  19. York Jr., J. W., and Piran, T. (1982). InSpacetime and Geometry. R. Matzner and L. Shepley, eds. (University of Texas Press, Austin), pp. 145–176.

    Google Scholar 

  20. Gassman, G. Private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Choptuik, M., Unruh, W.G. An introduction to the multi-grid method for numerical relativists. Gen Relat Gravit 18, 813–843 (1986). https://doi.org/10.1007/BF00770203

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00770203

Keywords

  • Black Hole
  • Initial Data
  • Numerical Experiment
  • Basic Principle
  • Differential Geometry