General Relativity and Gravitation

, Volume 18, Issue 8, pp 813–843 | Cite as

An introduction to the multi-grid method for numerical relativists

  • Matthew Choptuik
  • W. G. Unruh
Research Articles


The multi-grid method, which has made a considerable impact on both theoretical and applied numerical analysis in the past decade, is reviewed within the context of the solution of boundary value problems in 3 + 1 numerical relativity. The basic principles of operation of a multi-grid algorithm are discussed and, with the aid of numerical experiments on exactly soluble model problems, the method is compared to more traditional techniques such as SOR. The results of application of the method to a set of axisymmetric problems for black hole initial data, previously determined by relaxation techniques, are presented.


Black Hole Initial Data Numerical Experiment Basic Principle Differential Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramowitz, M., and Stegun, I. A. (1972).Handbook of Mathematical Functions (Dover, New York).Google Scholar
  2. 2.
    Bowen, J. M., and York, J. W. (1980).Phys. Rev. D 21, 2047.Google Scholar
  3. 3.
    Brandt, A. (1977).Math. Comput. 31, 333.Google Scholar
  4. 4.
    Brandt, A. (1977). InNumerical Software III, John Rice, ed. (Academic Press, New York), pp. 277–318.Google Scholar
  5. 5.
    Brandt, A. (1979). InNumerical Analysis of Singular Perturbation Problems, P. W. Hemker and J. J. Miller, eds. (Academic Press, New York/London), pp. 53–147.Google Scholar
  6. 6.
    Brandt, A. (1982). InLecture Notes in Mathematics: Multi Grid Methods, Vol. 960, W. Hackbusch and U. Trottenberg, eds. (Springer Verlag, New York).Google Scholar
  7. 7.
    Choptuik, M. (1982). M.Sc. Thesis (University of British Columbia).Google Scholar
  8. 8.
    Eppley, K. (1977).Phys. Rev. D 16, 1609.Google Scholar
  9. 9.
    Evans, C. R., Smarr, L., and Wilson, J. R. (1983). Preprint.Google Scholar
  10. 10.
    Griffiths, D. F., and Mitchell, A. R. (1980).The Finite Difference Method in Partial Differential Equations (John Wiley, New York).Google Scholar
  11. 11.
    Mitchell, A. R., and Wait, R. (1977).The Finite Element Method in Partial Differential Equations (John Wiley, New York).Google Scholar
  12. 12.
    Nakamura, Maeda, T. K., Miyami, S., and Sasaki, M. (1980).Progr. Theor. Phys. 63, 1229.Google Scholar
  13. 13.
    O. Murchadha N., and York Jr., J. W. (1974).Phys. Rev. D 10, 428.Google Scholar
  14. 14.
    Piran, T. (1983). InGravitational Radiation, N. Deruelle and T. Piran, eds. (North Holland, New York), pp. 203–256.Google Scholar
  15. 15.
    Smarr, L. (1979). InSources of Gravitational Radiation, L. Smarr, ed. (Cambridge University Press, Cambridge), pp. 139–159.Google Scholar
  16. 16.
    Varga, R. S. (1962).Matrix Iterative Analysis (Prentice-Hall, Englewood Cliffs, N.J.).Google Scholar
  17. 17.
    York Jr., J. W. (1973).J. Math. Phys. 14, 456.Google Scholar
  18. 18.
    York Jr., J. W. (1979). InSources of Gravitational Radiation. L. Smarr, ed. (Cambridge University Press, Cambridge, pp. 83–126.Google Scholar
  19. 19.
    York Jr., J. W., and Piran, T. (1982). InSpacetime and Geometry. R. Matzner and L. Shepley, eds. (University of Texas Press, Austin), pp. 145–176.Google Scholar
  20. 20.
    Gassman, G. Private communication.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Matthew Choptuik
    • 1
  • W. G. Unruh
    • 1
  1. 1.Department of PhysicsUniversity of British ColumbiaVancouverCanada

Personalised recommendations