Skip to main content
Log in

Modeling of cell culture processes

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Models of cell processes can be particularly useful in simulating, optimizing and controlling cell culture systems. Models reported in the literature are of various degrees of biological structure and mathematical complexity and describe cell growth, death, metabolism, and product formation, alone or in combination with each other. This paper reviews these modeling efforts, discusses their results, potential and limitations, and identifies areas where future modeling studies may be especially valuable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abraham KA, Eikom TS, Dowben RS, Dowben RM & Garatun-Tjeldstø O (1976) Cell-free translation of messenger RNA for a myeloma light chain prepared from synchronized plasmacytoma cells. Eur. J. Biochem. 65: 79–86.

    Google Scholar 

  • Adam JA (1986). A simplified mathematical model of tumor growth. Math. Biosci. 81: 224–229.

    Google Scholar 

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K & Watson JD (1989) Molecular Biology of the Cell, 2nd ed. Garland Publishing, Inc., New York.

    Google Scholar 

  • Alexander ML & Ramkrishna D (1991) Cybernetic modeling of iron limited growth and siderophore production. Biotechnol. Bioeng. 38: 637–652.

    Google Scholar 

  • Andrews GF (1993) The yield equations in the modeling and control of bioprocesses. Biotechnol Bioeng. 42: 549–556.

    Google Scholar 

  • Bailey JE & Ollis DF (1986) Biochemical Engineering Fundamentals, 2nd edition, McGraw-Hill, New York.

    Google Scholar 

  • Batt BC & Kompala DS (1989) A structured kinetic modeling frame-work for the dynamics of hybridoma growth and monoclonal antibody in production in continuous suspension cultures. Biotechnol. Bioeng. 34: 515–531.

    Google Scholar 

  • Bibila TA & Flickinger MC (1991a) Structured model for monoclonal antibody synthesis in exponentially growing and stationary phase hybridoma cells. Biotechnol. Bioeng. 37: 210–226.

    Google Scholar 

  • Bibila TA & Flickinger MC (1991b) Model of interorganelle monoclonal antibody transport and secretion in mouse hybridoma cells. Biotechnol. Bioeng. 38: 767–780.

    Google Scholar 

  • Bibila TA & Flickinger MC (1992a) Use of a structured kinetic model of antibody synthesis and secretion for optimization of antibody production systems: I. Steady-state analysis. Biotechnol. Bioeng. 39: 251–261.

    Google Scholar 

  • Bibila TA & Flickinger MC (1992b) Use of a structured kinetic model of antibody synthesis and secretion for optimization of antibody production systems: II. Transient analysis. Biotechnol. Bioeng. 39: 262–272.

    Google Scholar 

  • Bramble JL, Graves DJ & Brodelius P (1991) Calcium and phosphate effects on growth and alkaloid production inCoffea arabica: Experimental results and mathematical model. Biotechnol. Bioeng. 37:859–868.

    Google Scholar 

  • Brooks RF (1981) Variability in the cell cycle and the control of proliferation. In: John PCL (ed.) The Cell Cycle (pp. 35–61) Cambridge University Press, Cambridge.

    Google Scholar 

  • Casciari JJ, Sotirchos SV & Sutherland RM (1992) Mathematical modelling of microenvironment and growth in EMT6/Ro multicellular tumour spheroids. Cell Proliferation. 25: 1–22.

    Google Scholar 

  • Cazzador L & Mariani L (1993) Growth and production modeling in hybridoma continuous cultures. Biotechnol. Bioeng. 42: 1322–1330.

    Google Scholar 

  • Chaplain MAJ & Sleeman BD (1992) A methematical model for the growth and classification of a solid tumor: A new approach via nonlinear elasticity theory using strain energy functions. Math. Biosci. 111: 169–215.

    Google Scholar 

  • Cherry RS & Papoutsakis ET (1989) Modeling of contact-inhibited animal cell growth on flat surfaces and spheres. Biotechnol. Bioeng. 33: 300–305.

    Google Scholar 

  • Croughan MS, Hamel J-F & Wang DIC (1987) Hydrodynamic effects on animal cells grown in microcarrier cultures. Biotechnol. Bioeng. 29: 130–141.

    Google Scholar 

  • Croughan MS, Hamel J-F & Wang DIC (1988) Effects of microcarrier concentration in animal cell culture. Biotechnol. Bioeng. 32: 975–982.

    Google Scholar 

  • Dalili M & Ollis DF (1988) The influence of cyclic nucleotides on hybridoma growth and monoclonal antibody production. Biotechnol. Letters 10(11): 781–786.

    Google Scholar 

  • Dalili M & Ollis DF (1989) Transient kinetics of hybridoma growth and monoclonal antibody production in serum-limited cultures. Biotechnol. Bioeng. 33: 984–990.

    Google Scholar 

  • Dalili M, Sayles GD & Ollis DF (1990) Glutamine-limited batch hybridoma growth and antibody production: Experiment and model. Biotechnol. Bioeng. 36: 74–82.

    Google Scholar 

  • Damiani G, Cosulich E & Bargellesi A (1979) Synthesis and secretion of IgG in synchronized mouse myeloma cells. Exp. Cell Res. 118: 295–303.

    Google Scholar 

  • Darnell J, Lodish H & Baltimore D (1986) Molecular Cell Biology. Scientific American Books, New York.

    Google Scholar 

  • Dhurjati P, Ramkrishna D, Flickinger MC & Tsao GT (1985) A cybernetic view of microbial growth: Modeling of cells as optimal strategists. Biotechnol. Bioeng. 27: 1–9.

    Google Scholar 

  • Domach MM, Leung SK, Cahn RE, Cocks GG & Shuler ML (1984) Computer model for glucose-limited growth of a single cell ofEscherichia Coli B/r-A. Biotechnol. Bioeng. 26: 203–216.

    Google Scholar 

  • Dodge TC, Ji G-Y & Hu W-S (1987) Loss of viability in hybridoma cell culture—a kinetic study. Encyme Microb. Technol. 9: 607–611.

    Google Scholar 

  • Durand RE (1990) Multicell spheroids as a model for cell kinetic studies. Cell Tissue Kinet. 23: 141–159.

    Google Scholar 

  • Dyken JJ & Sambanis A (1994) Ammonium selectively inhibits the regulated pathway of protein secretion in two endocrine cell lines. Enzyme Microb. Technol., in press.

  • Fantes PA & Nurse P (1981) Division timing: Controls, models and mechanisms. In: John PCL (ed.) The Cell Cycle (pp. 11–33) Cambridge University Press, Cambridge.

    Google Scholar 

  • Fielding A (1992) Applications of fractal geometry to biology. Computer Applications in the Biosciences 8: 359–366.

    Google Scholar 

  • Forestell SP, Milne BJ, Kalogerakis N & Behie LA (1992) A cellular automaton model for the growth of anchorage-dependent mammalian cells used in vaccine production. Chem. Eng. Sci. 47(9–11): 2381–2386.

    Google Scholar 

  • Frame KK & Hu W-S (1988) A model for density-dependent growth of anchorage-dependent mammalian cells. Biotechnol. Bioeng. 32: 1061–1066.

    Google Scholar 

  • Frame KK & Hu W-S (1991a) Kinetic study of hybridoma cell growth in continuous culture. I. A model for non-producing cells. Biotechnol. Bioeng. 37: 55–64.

    Google Scholar 

  • Frame KK & Hu W-S (1991b) Kinetic study of hybridoma cell growth in continuous culture. II. Behavior of producers and comparison to nonproducers. Biotechnol. Bioeng. 38: 1020–1028.

    Google Scholar 

  • Franek F, Vomastek T & Dolnikova J (1992) Fragmented DNA and apoptotic bodies document the programmed way of cell death in hybridoma cultures. Cytotechnology 9: 117–123.

    Google Scholar 

  • Fredrickson AG (1976) Formulation of structured growth models. Biotechnol. Bioeng. 18: 1481–1486.

    Google Scholar 

  • Fredrickson AG (1992) Incorporation of cell cycle phenomena into distributed models of cell population growth. Presented at the Engineering Foundation Conference on Cell Culture Engineering, Palm Coast, Florida, February 1992.

  • Gaertner JG & Dhurjati P (1993a) Fractional factorial study of hybridoma behavior. 1. Kinetics of growth and antibody production. Biotechnol. Prog. 9(3): 298–308.

    Google Scholar 

  • Gaertner JG & Dhurjati P (1993b) Fractional factorial study of hybridoma behavior. 2. Kinetics of nutrient uptake and waste production. Biotechnal. Prog. 9(3): 309–316.

    Google Scholar 

  • Garatun-Tjeldstø O, Pryme IF, Weltman JK & Dowben RM (1976) Synthesis and secretion of light-chain immunoglobulin in two successive cycles of synchronized plasmacytoma cells. J. Cell Biol. 68: 232–239.

    Google Scholar 

  • Glacken MW, Adema E & Sinskey AJ (1988) Mathematical descriptions of hybridoma culture kinetics: I. Initial metabolic rates. Biotechnol. Bioeng. 32: 491–506.

    Google Scholar 

  • Glacken MW, Adema E & Sinskey AJ (1989a) Mathematical descriptions of hybridoma culture kinetics: II. The relationship between thiol chemistry and the degradation of serum activity. Biotechnol. Bioeng. 33: 440–450.

    Google Scholar 

  • Glacken MW, Huang C & Sinskey AJ (1989b) Mathematical descriptions of hybridoma culture kinetics. III. Simulation of fed-batch bioreactors. J. Biotechnol. 10: 39–66.

    Google Scholar 

  • Goetghebeur S & Hu W-S (1991) Cultivation of anchorage-dependent animal cells in microsphere-induced aggregate culture. Appl. Microbiol. Biotechnol. 34: 735–741.

    Google Scholar 

  • Goochee CF & Monica T (1990) Environmental effects on protein glycosylation. Bio/Technology 8: 421–427.

    Google Scholar 

  • Henderson MH, Ting-Beall HP & Tran-Son-Tay R (1992) Shear sensitivity of mitotic doublets in GAP A3 hybridoma cells. ASME Bioprocess Engineering Symposium (1992) BED-Vol. 23: 7.

    Google Scholar 

  • Hirsch HR & Witten M (1991) The waste-product theory of aging: Simulation of metabolic waste production. Experimental Gerontology 26: 549–567.

    Google Scholar 

  • Hu W-S & Himes VB (1989) Stoichiometric considerations of mammalian cell metabolism in bioreactors. In: Fiechter A, Okada H & Tanner RD (eds.) Bioproducts and Bioprocesses (pp. 33–46): Second conference to promote Japan/US joint projects and cooperation in biotechnology, Lake Biwa, Japan, Sept. 27–30, 1986. Springer-Verlag, Berlin.

    Google Scholar 

  • Hu W-S, Meier J & Wang DIC (1985) A mechanistic analysis of the inoculum requirement for the cultivation of mammalian cells on microcarriers. Biotechnol. Bioeng. 27: 585–595.

    Google Scholar 

  • Hu W-S & Peshwa MV (1991) Animal cell bioreactors — Recent advances and challenges to scale-up. Can. J. Chem. Eng. 69: 409–420.

    Google Scholar 

  • Hu W-S & Wang DIC (1987) Selection of microcarrier diameter. Biotechnol. Bioeng. 30: 548–557.

    Google Scholar 

  • Jenkins N & Hovey A (1993) Temperature control of growth and productivity in mutant chinese hamster ovary cells synthesizing a recombinant protein. Biotechnol. Bioeng. 42: 1029–1036.

    Google Scholar 

  • Jones MN & Perry R (1980) The application of particle size analysis to the aggregation of chinese hamster cells by concanavalin A. Exp. Cell Res. 128: 41–46.

    Google Scholar 

  • Kimmel M & Axelrod DE (1991) Unequal cell division and colony size of mammalian cells: A mathematical model and analysis of experimental data. J. Theor. Biol. 153: 157–180.

    Google Scholar 

  • Kiremitçi M, Özilgen M & Piskin E (1989) Attachment and growth kinetics of anchorage-dependent BHK cells on microcarriers. Enzyme Microb. Technol. 11: 830–836.

    Google Scholar 

  • Kompala DS, Ramkrishna D & Tsao GT (1984) Cybernetic modeling of microbial growth on multiple substrates. Biotechnol. Bioeng. 26: 1272–1281.

    Google Scholar 

  • Kompala DS, Ramkrishna D, Jansen NB & Tsao GT (1986) Investigation of bacterial growth on mixed substrates: Experimental evaluation of cybernetic models. Biotechnol. Bioeng. 28: 1044–1055.

    Google Scholar 

  • Lauffenburger D & Cozens C (1989) Regulation of mammalian cell growth by autocrine growth factors: Analysis of consequences for inoculum cell density effects. Biotechnol. Bioeng. 33: 1365–1378.

    Google Scholar 

  • Liao JC & Lightfoot EN Jr. (1988) Lumping analysis of biochemical reaction systems with time scale separation. Biotechnol. Bioeng. 31: 869–879.

    Google Scholar 

  • Liberti P & Baglioni C (1973) Synthesis of immunoglobulin and nuclear protein in synchronized mouse myeloma cells. J. Cell. Physiol. 82: 113–120.

    Google Scholar 

  • Lim H-S, Han B-K, Kim J-H, Peshwa MV & Hu W-S (1992) Spatial distribution of mammalian cells grown on macroporous microcarriers with improved attachment kinetics. Biotechnol. Prog. 8(6): 486–493.

    Google Scholar 

  • Lim JHF & Davies GA (1990) A stochastic model to simulate the growth of anchorage dependent cells on flat surfaces. Biotechnol. Bioeng. 36: 547–562.

    Google Scholar 

  • Lin AA, Kimura R & Miller WM (1993) Production of tPA in recombinant CHO cells under oxygen-limited conditions. Biotechnol. Bioeng. 42: 339–350.

    Google Scholar 

  • Linardos TI, Kalogerakis N, Behie LA & Lamontagne LR (1991) The effect of specific growth rate and death rate on monoclonal antibody production in hybridoma chemostat cultures. Can. J. Chem. Eng. 69: 429–438.

    Google Scholar 

  • Linardos TI, Kalogerakis N & Behie LA (1992) Cell cycle model for growth rate and death rate in continuous suspension hybridoma cultures. Biotechnol. Bioeng. 40: 359–368.

    Google Scholar 

  • Liskay RM (1977) Absence of a measurable G2 phase in two chinese hamster cell lines. Proc. Natl. Acad. Sci. USA 74: 1622–1625.

    Google Scholar 

  • Maiorella BL, Winkelhake J, Young J, Moyer B, Bauer R, Hora M, Andya J, Thomson J, Patel T & Parekh R (1993) Effect of culture conditions on IgM antibody structure, pharmacokinetics and activity. Bio/Technology 11: 387–392.

    Google Scholar 

  • Martens DE, de Grooijer CD, Beuvery EC & Tramper J (1992) Effect of serum concentration on hybridoma viable cell density and production of monoclonal antibodies in CSTRs and on shear sensitivity in air-lift loop reactors. Biotechnol. Bioeng. 39: 891–897.

    Google Scholar 

  • Marusic M, Bajzer Z, Freyer JP & Vuk-Pavlovic S (1991) Modeling autostimulation of growth in multicellular tumor spheroids. Int. J. Biomed. Comput. 29: 149–158.

    Google Scholar 

  • McQueen A & Bailey JE (1990) Effect of ammonium ion and extra-cellular pH on hybridoma cell metabolism and antibody production. Biotechnol. Bioeng. 35: 1067–1077.

    Google Scholar 

  • Miller WM, Blanch HW & Wilke CR (1986) Kinetic analysis of hybridoma growth in continuous suspension culture. ACS National Meeting, Anaheim 1986.

  • Miller WM, Blanch HW & Wilke CR (1988) A kinetic analysis of hybridoma growth and metabolism in batch and continuous suspension culture: Effect of nutrient concentration, dilution rate, and pH. Biotechnol. Bioeng. 32: 947–965.

    Google Scholar 

  • Miller WM, Wilke CR & Blanch HW (1987) Effects of dissolved oxygen concentration on hybridoma growth and metabolism in continuous culture. J. Cell. Physiol. 132: 524–530.

    Google Scholar 

  • Mitchison JM (1971) The Biology of the Cell Cycle. Cambridge University Press, Cambridge.

    Google Scholar 

  • Mitchison JM (1981) Changing perspectives in the cell cycle. In: John PCL (ed.) The Cell Cycle (pp. 1–10) Cambridge University Press, Cambridge.

    Google Scholar 

  • Mizrahi A, Vosseller GV, Yagi Y & Moore GE (1972) The effect of dissolved oxygen partial pressure on growth, metabolism and immunoglobulin production in a permanent human lymphocyte cell line culture. Proc. Soc. Exp. Biol. Med. 139: 118–122.

    Google Scholar 

  • Needham D, Ting-Beall HP, & Tran-Son-Tay R (1990) Morphology and mechanical properties of GAP A3 hybridoma cells as related to cell cycle. ASME Bioprocess Engineering Symposium (1990) BED-Vol. 16: 5–10.

    Google Scholar 

  • Noe DA & Delenick JC (1989) Quantitative analysis of membrane and secretory protein processing and intracellular transport. J. Cell Sci. 92: 449–459.

    Google Scholar 

  • O'Neil M (1991) A general method for modeling cell populations undergoing G1 → GO transitions during development. J. Theor. Biol. 153: 499–518.

    Google Scholar 

  • Ozturk SS & Palsson BO (1990) Effects of dissolved oxygen on hybridoma cell growth, metabolism, and antibody production kinetics in continuous culture. Biotechnol. Prog. 6: 437–446.

    Google Scholar 

  • Palsson BO & Joshi A (1987) On the dynamic order of structuredEschericia coli growth models. Biotechnol. Bioeng. 29: 789–792.

    Google Scholar 

  • Peshwa MV, Kyung Y-S, McClure DB & Hu W-S (1993) Cultivation of mammalian cells as aggregates in bioreactors: Effect of calcium concentration on spatial distribution of viability. Biotechnol. Bioeng. 41: 179–187.

    Google Scholar 

  • Ramirez OT & Mutharasan R (1990) Cell cycle- and growth phase-dependent variations in size distribution, antibody productivity, and oxygen demand in hybridoma cultures. Biotechnol. Bioeng. 36: 839–848.

    Google Scholar 

  • Ray NG & Shuler ML (1987) Development of a single cell model for mammalian cells. In: Dean RC Jr. & Nerem RM (eds.) Bioprocess Engineering Colloqium (pp. 71–74). Presented at the Winter Annual Meeting of the ASME, Boston, MA, December 1987.

  • Rennen WA, Jordan M, Eppenberger HM & Leist C (1993) Cell-cell adhesion and aggregation: Influence on the growth behavior of CHO cells. Biotechnol. Bioeng. 41: 188–193.

    Google Scholar 

  • Ruaan R-C, Tsai G-J & Tsao GT (1993) Monitoring and modeling density-dependent growth of anchorage-dependent cells. Biotechnol. Bioeng. 41: 380–389.

    Google Scholar 

  • Sambanis A, Lodish HF & Stephanopoulos Gr (1991) A model of secretory protein trafficking in recombinant AtT-20 cells. Biotechnol. Bioeng. 38: 280–295.

    Google Scholar 

  • Seamans TC & Hu W-S (1990) Kinetics of growth and antibody production by a hybridoma cell line in a perfusion culture. J. Ferment. Bioeng. 70(4): 241–245.

    Google Scholar 

  • Shaughnessy TS & Kargi F (1990a) Growth and product inhibition kinetics of T-cell hybridomas producing lymphokines in batch and continuous culture. Enzyme Microb. Technol. 12: 669–675.

    Google Scholar 

  • Shaughnessy TS & Kargi F (1990b) Transient behavior of T-cell hybridomas in response to changes in metabolite concentrations in continuous culture. Enzyme Microb. Technol. 12: 676–684.

    Google Scholar 

  • Sheldrake AR (1974) The ageing, growth, and death of cells. Nature 250: 381–385.

    Google Scholar 

  • Shi Y, Ryu DY & Park SH (1993) Monoclonal antibody productivity and the metabolic pattern of perfusion cultures under varying oxygen tensions. Biotechnol. Bioeng. 42: 430–439.

    Google Scholar 

  • Shimizu H, Araki K, Shioya S & Suga K (1991) Optimal production of glutathione by controlling the specific growth rate of yeast in fed-batch culture. Biotechnol. Bioeng. 38: 196–205.

    Google Scholar 

  • Shuler ML, Leung S & Dick CC (1979) A mathematical model for the growth of a single bacterial cell. Annals N.Y. Acad. Sci. 326 (Biochemical Engineering): 35–55.

    Google Scholar 

  • Silva TR & Malcata FX (1993) On the theoretical determination of optimal times for biomass production in batch cultures of aggregate-forming cells. Biotechnol. Prog. 9(1): 21–24.

    Google Scholar 

  • Stiles CD, Cochran BH & Scher CD (1981) Regulation of the mammalian cell cycle by hormones. In: John PCL (ed.) The Cell Cycle (pp. 119–138) Cambridge University Press, Cambridge.

    Google Scholar 

  • Suzuki E & Ollis DF (1989) cell cycle model for antibody production kinetics. Biotechnol. Bioeng. 35: 1398–1402.

    Google Scholar 

  • Suzuki E & Ollis DF (1990) Enhanced antibody production at slowed growth rates: Experimental demonstration and a simple structured model. Biotechnol Prog. 6(3): 231–236.

    Google Scholar 

  • Swan GW (1992) The diffusion of an inhibitor in a spherical tumor. Math. Biosci. 108: 75–79.

    Google Scholar 

  • Syu M-J & Tsao GT (1993) Neural network modeling of batch cell growth pattern. Biotechnol. Bioeng. 42: 376–380.

    Google Scholar 

  • Tramper J, Smit D, Straatman J & Vlak JM (1987) Bubble column design for growth of fragile insect cells. Bioproc. Eng. 2: 37–41.

    Google Scholar 

  • Tramper J, Williams JB, Joustra D & Vlak JM (1986) Shear sensitivity of insect cells in suspension. Enzyme Microb. Technol. 8: 33–36.

    Google Scholar 

  • Truskey GA, Nicolakis DP, DiMasi D, Haberman A & Swartz RW (1990) Kinetic studies and unstructured models of lymphocyte metabolism in fed-batch culture. Biotechnol. Bioeng. 36: 797–807.

    Google Scholar 

  • Tsuchiya HM, Fredrickson AG & Aris R (1966) Dynamics of microbial cell populations. Adv. Chem. Eng. 6: 125–206.

    Google Scholar 

  • Vallino JJ & Stephanopoulos GN (1988) Intelligent sensors in biotechnology: Applications for the monitoring of fermentations and cellular metabolism. Ann. N.Y. Acad. Sci. (Biochem. Eng-V), pp. 415–430.

  • van Breusegem V, Thibault J & Cheruy A (1991) Adaptive neural models for one-line prediction in fermentation. Can. J. Chem. Eng. 69: 481–487.

    Google Scholar 

  • van der Heijden RTJM, Hellinga C, Luyben KCAM & Honderd G (1989) State estimators (observers) for the on-line estimation of non-measurable process variables. Trends in Biotechnology 7: 205–209.

    Google Scholar 

  • Vits H, Peshwa MV & Hu W-S (1992) Oscillatory behavior in continuous aggregate cultures of mammalian cells. In: Murakami H, Shirahata S & Tachibana H (eds.), Animal cell technology: Basic and applied aspects, Kluwer Academic Publ., pp. 121–127.

  • Vomastek T & Franek F (1993) Kinetics of development of spontaneous apoptosis in B cell hybridoma cultures. Immunol. Lett. 35: 19–24.

    Google Scholar 

  • Wu P, Ray NG & Shuler ML (1992) A single-cell model for CHO cells. Ann. N.Y. Acad. Sci. (Biochem. Eng. VII), pp. 152–187.

  • Wu P, Ray NG & Shuler ML (1993) A computer model for intracellular pH regulation in chinese hamster ovary cells. Biotechnol. Prog. 9(4): 374–384.

    Google Scholar 

  • Zhang X, Visala A & Halme A (1992) A kinetic model of mammalian cell cultures. In: Karim NN & Stephanopoulos G (eds.) Modeling and Control of Biotechnical Processes. IFAC Symposia Series 10: 367–370.

  • Zheng T (1991) A mathematical model of proliferation and aging of cells in culture. J. Theor. Biol. 149: 287–315.

    Google Scholar 

  • Zielke HR, Zielke CL & Ozand PT (1984) Glutamine: A major energy source for cultured mammalian cells. FASEB Federation Proceedings 43(1): 121–125.

    Google Scholar 

  • Zygurakis K, Bizios R & Markenscoff P (1991a) Proliferation of anchorage-dependent contact-inhibited cells: I. Development of theoretical models based on cellular automata. Biotechnol. Bioeng. 38: 459–470.

    Google Scholar 

  • Zygurakis K, Bizios R & Markenscoff P (1991b) Proliferation of anchorage-dependent contact-inhibited cells: II. Experimental results and validation of the theoretical models. Biotechnol. Bioeng. 38: 471–479.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Key words

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tziampazis, E., Sambanis, A. Modeling of cell culture processes. Cytotechnology 14, 191–204 (1994). https://doi.org/10.1007/BF00749616

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00749616

Keywords

Navigation