Advertisement

Cytotechnology

, Volume 11, Issue 1, pp 41–48 | Cite as

Increase of hybridoma productivity using an original dialysis culture system

  • Béatrice Mathiot
  • Angelo Perani
  • Dominique Dumas
  • Michel Maugras
  • Jacques Didelon
  • Jean-François Stoltz
Article

Abstract

Hybridoma cell growth and monoclonal antibody production were investigated with a laboratory-made system in which cells were grown in dialysis tubing (MW cut-off 25 kD). The dialysis system contained 10 ml of cell suspension and was immersed in 200 ml of culture medium which when replaced or was at 4-day intervals. With this system, monoclonal antibody concentrations similar to those observed in ascites (concentrations in the order of one gramme per liter) were obtained. With no medium replacement, the antibody production was 3.3 g/l and the cell productivity 3.2×10−8 μg of IgM produced per cell in one minute. With medium replacement the antibody production was higher, 4.4 g/l but the cell productivity was lower, 1.49×10−8 μg per cell in one minute. Cells cultivated in non-optimized conditions were better producers than cells growing in a good environment.

Key words

cell productivity dialysis tubing hybridoma cells monoclonal antibody secretion 

Abbreviations

FCS

fetal calf serum

Ig

immunoglobulin

MAb

monoclonal antibody

MW

molecular weight

MWCO

molecular weight cut off

RM

replaced medium

NRM

non replaced medium

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Adamson SR, Fritzpatrick SL, Behie LA, Gaucher GM and Lesser BH (1983)In vitro production of high titre monoclonal antibody by hybridoma cells in dialysis culture. Biotechnol. Lett. 5: 573–578.Google Scholar
  2. Clark JTM (1987) Culture des cellules en masse: un examen des systemes actuellement disponibles pour la culture à grande échelle des cellules en suspension et des cellules adhérentes. Bio-Sciences 6: 51–53.Google Scholar
  3. Comer MJ, Kearns M, Wahl J, Munster M, Lorentz T, Szperalski B, Koch S, Behrendt U and Brunner H (1990) Industrial production of monoclonal antibodies and therapeutic proteins by dialysis fermentation. Cytotechnology 3: 295–299.Google Scholar
  4. Duval D, Demangel C, Munier-Johain K, Miossec S and Geahel I (1991) Factors controlling cell proliferation and antibody production in mouse hybridoma cells: I Influence of the amino acid supply. Biotechnol. Bioeng. 38: 561–570.Google Scholar
  5. Eyl V, Mathiot B, Dusch M, Maugras M and Stoltz JF (1991) Comparaison de différentes méthodes de production d'anticorps monoclonaux. Inov. Tech. Biol. Med. 12: 457–466.Google Scholar
  6. Glacken MW, Fleischaker RJ and Sinskey AJ (1985) Largescale production of mammalian cells and their products: engineering principles and barriers to scale up. Ann. N.Y. Acad. Sci. 413: 355–372.Google Scholar
  7. Glassy MC, Tharakan JP and Chau PC (1988) Serum free media in hybridoma culture and monoclonal antibody production. Biotechnol. Bioeng. 32: 1015–1028.Google Scholar
  8. Graf H, Rabaud JN and Egly JM (1991) Screening of various mammalian cell culture media to establish a downstream purification scheme. J. Immunol. Method. 139: 135–144.Google Scholar
  9. Griffiths JB (1992) Animal cell culture processes — batch or continuous? J. Biotechnol. 22: 21–30.Google Scholar
  10. Käsehagen C, Linz F, Kretzmer G, Scheper T, Schügerl K (1991) Enzyme Microb. Technol. 13: 873–881.Google Scholar
  11. Lind W, Jäger V, Lucki-Lange M and Wagner R (1991) Characterization of protease activity in serum-free culture supernatants of hybridomas and recombinant mammalian cells. In: RE Spier, JB Griffiths, B Meignier (eds) 10th ESACT Meeting: Production of biologicals from animal cells in culture (pp. 196–202). Butterworth-Heinemann Ltd., Publishers, Oxford.Google Scholar
  12. Kearns M (1990) Integrated design for mammalian cell culture. Bio/Technol. 8: 409–413.Google Scholar
  13. Linardos TI, Kalogerakis N, Behie LA and Lamontagne LR (1992) Monoclonal antibody production in dialysed continuous suspension culture. Biotechnol. Bioeng. 39: 504–510.Google Scholar
  14. Long WJ, Palombo A, Schofield TL and Emini EA (1988) Effects of culture media on murine hybridomas: definition of optimal conditions for hybridoma viability, cellular proliferation and antibody production. Hybridoma 7: 69–77.Google Scholar
  15. Mancini G, Carbonara AO and Heremans JF (1965) Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry 2: 235–254.Google Scholar
  16. Märkl H, Lechner M, Gotz F (1990) A new dialysis fermentor for the production of high concentrations of extracellular enzymes. J. Ferment. Bioeng. 69: 244–249.Google Scholar
  17. Marquis CP, Harbour C, Barford JP and Low KS (1990) A comparison of different culture methods for hybridoma propagation and monoclonal antibody production. Cytotechnology 4: 69–76.Google Scholar
  18. Mathiot B (1992) Etudes de méthodes de culture et de milieux contenant des protéines humaines pour la production d'anticorps monoclonaux. Thèse de Génie Biologique. Université de Nancy I.Google Scholar
  19. Merten OW, Keller H, Siami K, Cabanie L and Leno M (1990) Batch production kinetics of hybridomas: pulse experiments. In: RE Spier, JB Griffiths, B Meignier (eds) 10th ESACT Meeting: Production of biologicals from animal cells in culture (pp. 609–615). Butterworth-Heinemann Ltd., Publishers, Oxford.Google Scholar
  20. Mohan SB and Lyddiatt A (1991) Passive release of monoclonal antibodies from hybridoma cells. Cytotechnology 5: 201–209.Google Scholar
  21. Munster MJ, Kearns MJ, Steegmans U, Behrendt U and Conner MJ (1991) A high density culture system for thein vitro production of human and mouse monoclonal antibodies. Bioprocess Eng. 6: 123–125.Google Scholar
  22. Murakami H (1989) Serum-free media used for cultivation of hybridomas. In: Alan R. Liss Inc. (eds) Monoclonal antibodies: production and application (pp. 107–141).Google Scholar
  23. Nakamura Y, Watanabe K, Noto T, Tajima T and Yamamura M (1989) A new compact and cell dense continuous culture system. J. Immunol. Method. 118: 31–35.Google Scholar
  24. Pannell R, Milstein C (1992) An oscillating bubble chamber for laboratory scale production of monoclonal antibodies as an alternative to ascitic tumors. J. Immunol. Method. 146: 43–48.Google Scholar
  25. Ronning OW, Schartum M, Winsnes A and Lindberg G (1991) Growth limitation in hybridoma cell cultures: the role of inhibitory or toxic metabolites. Cytotechnology 7: 15–24.Google Scholar
  26. Schlaeger EG, Eggimann B, Gast A (1987) Proteolytic activity in serum-free culture supernatants of mouse hybridomas cells. Develop. Biol. Standard 66: 403–408.Google Scholar
  27. Schlaeger EJ and Schumpp B (1989) Studies on mammalian cell growth in suspension culture. In: JB Griffiths, J Stephenne, PJ Crooy (eds) Advances in animal cell biology and technology for bioprocesses (pp. 386–396). Butterworth Publishers, Tip tree, Essex.Google Scholar
  28. Schmid G, Blanch HW and Wilke CR (1990) Hybridoma growth, metabolism, and product formation in HEPES-buffered medium: I Effect of passage number. Biotechnol. Lett. 12: 627–632.Google Scholar
  29. Schneider YJ (1989) Optimisation of hybridoma cell growth and antibody secretion in a chemically defined, serum-and protein-free culture medium. J. Immunol. Method. 116: 65–77.Google Scholar
  30. Schumpp B and Schlaeger EJ (1989) Physiological studies of high cell density culture of different cell lines. In: JB Griffiths, J Stephenne, PJ Crooy (eds) Advances in animal cell biology and technology for bioprocesses (pp. 224–229). Butterworth Publishers. Tiptree, Essex.Google Scholar
  31. Sjögren-Jansson E, Jansson G (1985) Large scale production of monoclonal antibodies in dialysis tubing. J. Immunol. Method. 84: 359–364.Google Scholar
  32. Sjögren-Jansson E, Ohlin M, Borrebaeck C and Jeansson S (1991) Production of human monoclonal antibodies in dialysis tubing. Hybridoma 10: 411–419.Google Scholar
  33. Sugimoto S, Lind W, Wagner R (1992) Activation of a specific proteolytic activity in suspension cultures of recombinant adherent cells. In: RE Spier, JB Griffiths, B Meignier, C Macdonald (eds) 11th ESACT Meeting: Animal cells technology: developments, process & products. (pp. 553–557). Butterworth-Heinemann Ltd., Publishers, Oxford.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Béatrice Mathiot
    • 1
  • Angelo Perani
    • 1
  • Dominique Dumas
    • 1
  • Michel Maugras
    • 1
    • 2
  • Jacques Didelon
    • 1
  • Jean-François Stoltz
    • 1
    • 2
  1. 1.INSERM U284Vandoeuvre-Les-Nancy CedexFrance
  2. 2.Université de Nancy INancy CedexFrance

Personalised recommendations