Skip to main content
Log in

Multidrug resistance (MDR) genes in haematological malignancies

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

The emergence of drug resistant cells is one of the main obstacles for successful chemotherapeutic treatment of haematological malignancies. Most patients initially respond to chemotherapy at the time of first clinical admission, but often relapse and become refractory to further treatment not only to the drugs used in the first treatment but also to a variety of other drugs. Laboratory investigations have now provided a cellular basis for this clinical observation of multidrug resistance (MDR). Expression of a glycoprotein (referred to as P-glycoprotein) in the membrane of cells made resistantin vitro to naturally occurring anticancer agents like anthracyclines, Vinca alkaloids and epipodophyllotoxins, has been shown to be responsible for the so-called classical MDR phenotype. P-glycoprotein functions as an ATP-dependent, unidirectional drug efflux pump with a broad substrate specificity, that effectively maintains the intracellular cytotoxic drug concentrations under a non-cytotoxic threshold value. Extensive clinical studies have shown that P-glycoprotein is expressed on virtually all types of haematological malignancies, including acute and chronic leukaemias, multiple myelomas and malignant lymphomas. Since in model systems for P-glycoprotein-mediated MDR, drug resistance may be circumvented by the addition of non-cytotoxic agents that can inhibit the outward drug pump, clinical trials have been initiated to determine if such an approach will be feasible in a clinical situation. Preliminary results suggest that some haematological malignancies, among which are acute myelocytic leukaemia, multiple myeloma and non-Hodgkin's lymphoma, might benefit from the simultaneous administration of cytotoxic drugs and P-glycoprotein inhibitors. However, randomised clinical trials are needed to evaluate the use of such resistance modifiers in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALL:

acute lymphocytic leukaemia

AML:

acute myelocytic leukaemia

BM:

bone marrow

CAT:

chloramphenicol acetyltransferase

CLL:

chronic lymphocytic leukaemia

CML:

chronic myelocytic leukaemia

CR:

complete remission

HCL:

hairy cell leukaemia

MDR:

multidrug resistance

MDS:

myelodysplastic syndrome

MM:

multiple myeloma

MoAb:

monoclonal antibody

NHL:

non-Hodgkin's lymphoma

PB:

peripheral blood

PCR:

polymerase chain reaction

PLL:

prolymphocytic leukaemia

RMA:

resistance modifying agent

VAD:

vincristine, doxorubicin, dexamethasone

References

  • Akiyama S, Cornwell MM, Kuwano M, Pastan I and Gottesman MM (1988) Most drugs that reverse multidrug resistance also inhibit photoaffinity labeling of P-glycoprotein by a vinblastine analog. Mol Pharmacol 33: 144–147.

    Google Scholar 

  • Bos JL, Verlaan-de Vries M, van der Eb AL, Janssen JWG, Delwel R, Lowenberg B and Colly LP (1987) Mutations in N-ras predominate in acute myeloid leukemia. Blood 69: 1237–1241.

    Google Scholar 

  • Branko K (1992) The multixenobiotic resistance mechanism in aquatic organisms. Crit Rev Toxicol 22: 23–43.

    Google Scholar 

  • Bright JM, and Buss DD (1990) Effects of verapamil on chronic doxorubicin-induced cardiotoxicity in dogs. J Natl Cancer Inst 82: 963–964.

    Google Scholar 

  • Brown VA, Smith SK, Dewar E, Stockdill G and Maddy AH (1985) Surface glycoproteins as markers of the cellular status of B chronic lymphocytic leukaemia lymphocytes. Clinics Exp Immunol 62: 95–103.

    Google Scholar 

  • Campos L, Guyotat D, Archimbaud E, Calmard-Oriol P, Tsuruo T, Troncy J, Treille D and Fiere D (1992) Clinical significance of multidrug resistance P-glycoprotein expression on acute nonlymphoblastic leukemia cells at diagnosis. Blood 79: 473–476.

    Google Scholar 

  • Chaudhary PM and Roninson IB (1991) Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell 66: 85–94.

    Google Scholar 

  • Chen C, Chin JE, Ueda K, Clark DP, Pastan I, Gottesman MM and Roninson IB (1986) Internal duplication and homology with bacterial transport proteins in themdr 1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell 47: 381–389.

    Google Scholar 

  • Chin JE, Soffir R, Noonan KE, Choi K and Roninson IB (1989) Structure and expression of the human MDR (P-glycoprotein) gene family. Mol Cell Biol 9: 3808–3820.

    Google Scholar 

  • Chin KV, Tanaka S, Darlington G, Pastan I and Gottesman MM (1990) Heat shock and arsenite increase expression of the multidrug resistance (MDR1) gene in human renal carcinoma cells. J Biol Chem 265: 221–226.

    Google Scholar 

  • Chin KV, Ueda K, Pastan I and Gottesman MM (1992) Modulation of activity of the promoter of the humanmdr1 gene byras andp53. Science 255: 459–462.

    Google Scholar 

  • Coon JS, Wang Y, Bines SD, Markham PN, Chong ASF and Gebel HM (1991) Multidrug resistance activity in human lymphocytes. Human Immunol 32: 134–140.

    Google Scholar 

  • Cordon-Cardo C, O'Brien JP, Boccia J, Casals D, Bertino JR and Melamed MR (1990) Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J Histochem Cytochem 38: 1277–1287.

    Google Scholar 

  • Cumber PM, Jacobs A, Hoy T, Fischer J, Whittaker JA, Tsuruo T and Padua RA (1990) Expression of the multiple drug resistance gene (mdr-1) and epitope masking in chronic lymphatic leukaemia. Br J Haemat 76: 226–230.

    Google Scholar 

  • Cumber PM, Jacobs A, Hoy T, Whittaker JA, Tsuruo T and Padua RA (1991) Increased drug accumulationex vivo with cyclosporin in chronic lymphatic leukemia and its relationship to epitope masking of P-glycoprotein. Leukemia 5: 1050–1053.

    Google Scholar 

  • Dalton WS, Grogan TM, Rybski JA, Scheper RJ, Richter L, Kailey J, Broxterman HJ, Pinedo HM and Salmon SE (1989) Immunohistochemical detection and quantitation of P-glycoprotein in multiple drug-resistant human myeloma cells: association with level of drug resistance and drug accumulation. Blood 73: 747–752.

    Google Scholar 

  • Deuchars KL, Duthie M and Ling V (1992) Identification of distinct P-glycoprotein gene sequences in rat. Biochim Biophys Acta 1130: 157–165.

    Google Scholar 

  • Drach D, Zhao S, Drach J, Mahadevia R, Gattringer C, Huber H and Andreeff M (1992) Subpopulations of normal peripheral blood and bone marrow cells express a functional multidrugs resistant phenotype. Blood 80: 2729–2734.

    Google Scholar 

  • Epstein J, Xiao H and Oba BK (1989) P-glycoprotein expression in plasma-cell myeloma is associated with resistance to VAD. Blood 74: 913–917.

    Google Scholar 

  • Fedeli L, Colozza M, Boschetti E, Sabalich I, Aristei C, Guerciolini R, Del Favero A, Rossetti R, Tonato M, Rambotti P and Davis S (1989) Pharmacokinetics of vincristine in cancer patients treated with nifedipine. Cancer 64: 1805–1811.

    Google Scholar 

  • Fojo AT, Ueda K, Slamon DJ, Poplack DG, Gottesman MM and Pastan I (1987) Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci USA 84: 265–269.

    Google Scholar 

  • Foxwell BMJ, Mackie A, Ling V and Ryffel B (1989) Identification of the multidrug resistance-related P-glycoprotein as a cyclosporin binding protein. Mol Pharmacol 36: 543–546.

    Google Scholar 

  • Galski H, Sullivan M, Willingham MC, Chin KV, Gottesman MM, Pastan I and Merlino GT (1989) Expression of a human multidrug resistance cDNA (MDR1) in the bone marrow of transgenic mice: resistance to daunomycin-induced leukopenia. Mol Cell Biol 9: 4357–4363.

    Google Scholar 

  • Gerlach JH, Endicott JA, Juranka PF, Henderson G, Sarangi F, Deuchars KL and Ling V (1986) Homology between P-glycoprotein and a bacterial haemolysin transport protein suggests a model for multidrug-resistance. Nature 324: 485–489.

    Google Scholar 

  • Gill DR, Hyde SC, Higgens CF, Valverde MA, Mintenig GM and Sepulveda FV (1992) Separation of drug transport and chloride channel functions of the human multidrug resistance P-glycoprotein. Cell 71: 23–32.

    Google Scholar 

  • Goldstein LJ, Galski H, Fojo AT, Willingham M, Lai SL, Gazdar A, Pirker R, Green A, Crist W, Brodeur, GM, Lieber M, Cossman J, Gottesman MM and Pastan I. (1989) Expression of a multidrug resistance gene in human cancers. J Natl Cancer Inst 81: 116–124.

    Google Scholar 

  • Gottesman MM, Willingham MC, Thiebaut F and Pastan I (1991) Expression of theMDR1 gene in normal human tissues. In: IB Roninson (ed) Molecular and Cellular Biology of Multidrug Resistance in Tumor Cells (pp. 279–289). New York: Plenum Press.

    Google Scholar 

  • Gottesman MM (1993) How cancer cells evade chemotherapy: sixteenth Richard and Hinda Rosenthal Foundation award lecture. Cancer Res 53: 747–754.

    Google Scholar 

  • Grogan TM, Spier CM, Salmon SE, Matzner M, Rybski J, Weinstein RS, Scheper RJ and Dalton WS (1993) P-glycoprotein expression in human plasma cell myeloma: correlation with prior chemotherapy. Blood 81: 490–495.

    Google Scholar 

  • Gros P, Croop J and Housman D (1986) Mammalian multidrug resistance gene: complete cDNA sequence indicates strong homology to bacterial transport proteins. Cell 47: 371–380.

    Google Scholar 

  • Gros P, Raymond M, Bell J and Housman D (1988) Cloning and characterization of a second member of the mousemdr gene family. Mol Cell Biol 8: 2770–2778.

    Google Scholar 

  • Gruber A, Vitols S, Norgren S, Arestrom I, Peterson C, Bjorkholm M, Reizenstein P and Luthman H (1992) Quantitative determination ofmdr1 gene expression in leukaemic cells from patients with acute leukaemia. Br J Cancer 66: 266–272.

    Google Scholar 

  • Hamada H and Tsuruo T (1988) Characterization of the ATPase activity of the Mr 170,000 to 180,000 membrane glycoprotein (P-glycoprotein) associated with multidrug resistance in K562/ADM cells. Cancer Res 48: 4926–4932.

    Google Scholar 

  • Herweijer H, Sonneveld P, Baas F and Nooter K (1990) Expression ofmdr1 andmdr3 multidrug-resistance genes in human acute and chronic leukemias and association with stimulation of drug accumulation by cyclosporin. J Natl Cancer Inst 82: 1133–1140.

    Google Scholar 

  • Herweijer H, Nooter K, Beishuizen A, Sonneveld P, Oostrum R, Hesseling-Janssen ALW and van Dongen J (1991) Expression ofmdr1 andmdr3 multidrug-resistance genes in hairy cell leukaemia. Eur J Cancer 27: 297–298.

    Google Scholar 

  • Higgens CF, Hyde SC, Mimmack MM, Gileadi U, Gill DR and Gallagher MP (1990) Binding protein-dependent transport systems. J Bioenerg Biomemb 22: 571–592.

    Google Scholar 

  • Higgens CF and Gottesman MM (1992) Is the multidrug transporter a flippase? Trends Biochem Sci 17: 18–21.

    Google Scholar 

  • Holmes J, Jacobs A, Carter G, Janowska-Wieczorek A and Padua RA (1989) Multidrug resistance in haemopoietic cell lines, myelodysplastic syndromes and acute myeloblastic leukaemia. Br J Haematol 72: 40–44.

    Google Scholar 

  • Holmes JA, Jacobs A, Carter G, Whittaker JA, Bentley DP and Padua RA (1990) Is themdr1 gene relevant in chronic lymphocytic leukemia? Leukemia 4: 216–218.

    Google Scholar 

  • Horio M, Gottesman MM and Pastan I (1988) ATP-dependent transport of vinblastine in vesicles from human multidrug-resistant cells. Proc Natl Acad Sci USA 85: 3580–3584.

    Google Scholar 

  • Hu G, Zhang W and Deisseroth AB (1992) P53 gene mutations in acute myelogenous leukaemia. Br J Haematol 81: 489–494.

    Google Scholar 

  • Juliano RL and Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455: 152–162.

    Google Scholar 

  • Kerr DJ, Graham J, Cummings J, Morrison JG, Thompson GG, Brodie MJ and Kaye SB (1986) The effect of verapamil on the pharmacokinetics of adriamycin. Cancer Chemother Pharmacol 18: 239–242.

    Google Scholar 

  • Kohno K, Sato S, Takano H, Matsuo K and Kuwano M (1989) The direct activation of human multidrug resistance gene (mdr1) by anticancer agents. Biochem Biophys Res Commun 165: 1415–1421.

    Google Scholar 

  • Kuwazuru Y, Yoshimura A, Hanada S, Utsunomiya A, Makino T, Ishibashi K, Kodama M, Iwahashi M, Arima T and Akiyama SI (1990) Expression of the multidrug transporter, P-glycoprotein, in acute leukemia cells and correlation to clinical drug resistance. Cancer 66: 868–873.

    Google Scholar 

  • Linsenmeyer ME, Jefferson S, Wolf M, Matthews JP, Board PG and Woodcock DM (1992) Levels of expression of themdr1 gene and glutathione S-transferase genes 2 and 3 and response to chemotherapy in multiple myeloma. Br J Cancer 65: 471–475.

    Google Scholar 

  • List AF, Spier CM, Cline A, Doll DC, Garewal H, Morgan R and Sandberg AA (1991) Expression of the multidrug resistance gene product (P-glycoprotein) in myelodysplasia is associated with a stem cell phenotype. Br J Haematol 78: 28–34.

    Google Scholar 

  • Lum BL, Kaubisch S, Yahanda AM, Adler KM, Jew L, Ehsan MN, Brophy NA, Halsey J, Gosland MP and Sikic BI (1992) Alteration of etoposide pharmacokinetics and pharmacodynamics by cyclosporin in a phase I trial to modulate multidrug resistance. J Clin Oncol 10: 1635–1642.

    Google Scholar 

  • Ma DDF, Davey RA, Harman DH, Isbister JP, Scurr RD, Mackertich SM, Dowden G and Bell DR (1987) Detection of a multidrug resistant phenotype in acute nonlymphoblastic leukaemia. Lancet i: 135–137.

    Google Scholar 

  • Marie JP, Zittoun R and Sikic BI (1991) Multidrug resistance (mdr1) gene expression in adult acute leukemias: correlations with treatment outcome andin vitro drug sensitivity. Blood 78: 586–592.

    Google Scholar 

  • Marie JP, Brophy NA, Ehsan MN, Aihara Y, Mohamed NA, Cornbleet J, Chao NJ and Sikic BI (1992a) Expression of multidrug resistance genemdr1 mRNA in a subset of normal bone marrow cells. Br J Haematol 81: 145–152.

    Google Scholar 

  • Marie JP, Helou C, Thevenin D, Delmer A and Zittoun R (1992b)In vitro effect of P-glycoprotein (P-gp) modulators on drug sensitivity of leukemic progenitors (CFUL) in acute myelogenous leukemia (AML). Exp Hematol 20: 565–568.

    Google Scholar 

  • Marie JP, Bastie JN, Coloma F, Suberville AM, Delmer A, Rio B, Delmas-Marsalet B, Leroux G, Casassus P, Baumelou E, Catalin J and Zittoun R (1993) Cyclosporin A as a modifier agent in the salvage treatment of acute leukemia (AL). Leukemia 7: 821–824.

    Google Scholar 

  • Maruyama Y, Murohashi I, Nara N and Aoki N (1989) Effects of verapamil on the cellular accumulation of daunorubicin in blast cells and on the chemosensitivity of leukaemic blast progenitors in acute myelogenous leukaemia. Br J Haematol 72: 357–362.

    Google Scholar 

  • Mickisch GH, Licht T, Merlino GT, Gottesman MM and Pastan I (1991) Chemotherapy and chemosensitization of transgenic mice which express the human multidrug resistance gene in bone marrow: efficacy, potency, and toxicity. Cancer Res 51: 5417–5424.

    Google Scholar 

  • Miller TP, Grogan TM, Dalton WS, Spier CM, Scheper RJ and Salmon SE (1991) P-glycoprotein expression in malignant lymphoma and reversal of clinical drug resistance with chemotherapy plus high-dose verapamil. J Clin Oncol 9: 17–24.

    Google Scholar 

  • Mori N, Wada M, Yokota J, Terada M, Okada M, Teramura M, Masuda M, Hoshino S, Motoji T, Oshimi K and Mizoguchi H (1992) Mutations of the p53 tumour suppressor gene in haematologic neoplasms. Br J Haematol 81: 325–340.

    Google Scholar 

  • Moscow JA, Fairchild CR, Madden MJ, Ransom DT, Wieand HS, O'Brien EE, Poplack DG, Cossman J, Myers C and Cowan KH (1989) Expression of anionic glutathione-S-transferase and P-glycoprotein genes in human tissues and tumors. Cancer Res 49: 1422–1428.

    Google Scholar 

  • Musto P, Melillo L, Lombardi G, Matera R, Di Giorgio G and Carotenuto M (1991) High risk of early resistant relapse for leukaemia patients with presence of multidrug resistance associated P-glycoprotein positive cells in complete remission. Br J Haematol 77: 50–53.

    Google Scholar 

  • Needleman SW, Kraus MH, Srivastava SK, Levine PH and Aaronson S (1986) High frequency of N-ras activation in acute myelogenous leukemia. Blood 67: 753–757.

    Google Scholar 

  • Ng WF, Sarangi F, Zastawny RL, Veinot-Drebot L and Ling V (1989) Identification of members of the P-glycoprotein multigene family. Mol Cell Biol 9: 1224–1232.

    Google Scholar 

  • Niehans GA, Jaszsz W, Brunetto V, Perri RT, Gajl-Peczalska K, Wick MR, Tsuruo T and Bloomfield C (1992) Immunohistochemical identification of P-glycoprotein in previously untreated, diffuse large cell and immunoblastic lymphomas. Cancer Res 52: 3768–3775.

    Google Scholar 

  • Nooter K, van den Engh GJ and Sonneveld P (1983) Quantitative flow cytometric determination of anthracycline content of rat bone marrow cells. Cancer Res 43: 5126–5130.

    Google Scholar 

  • Nooter K, Oostrum R and Deurloo J (1987) Effects of verapamil on the pharmacokinetics of daunomycin in the rat. Cancer Chemother Pharmacol 20: 176–178.

    Google Scholar 

  • Nooter K, Oostrum R, Jonker R, van Dekken H, Stokdijk W and van den Engh G (1989) Effect of cyclosporin A on daunorubicin accumulation in multidrug-resistant P388 leukemia cells measured by real-time flow cytometry. Cancer Chemother Pharmacol 23: 296–300.

    Google Scholar 

  • Nooter K, Sonneveld P, Janssen A, Oostrum R, Boersma T, Herweijer H, Valerio D, Hagemeijer A and Baas F (1990a) Expression of themdr3 gene in prolymphocytic leukemia: association with cyclosporin-A-induced increase in drug-accumulation. Int J Cancer 45: 626–631.

    Google Scholar 

  • Nooter K, Sonneveld P, Oostrum R, Herweijer H, Hagenbeek A and Valerio D (1990b) Overexpression of themdr1 gene in blast cells from patients with acute myelocytic leukemia is associated with decreased anthracycline accumulation that can be restored by cyclosporin-A. Int J Cancer 45: 263–268.

    Google Scholar 

  • Nooter K, Herweijer H, Jonker RR and van den Engh G (1990c) On-line flow cytometry — a versatile method for kinetic measurements. In: Z Darzynkiewicz and H Crissman (eds) Methods in Cell Biology (pp. 631–645). Orlando: Academic Press.

    Google Scholar 

  • Nooter K and Herweijer H (1991) Multidrug resistance (mdr) genes in human cancer. Br J Cancer 63: 663–669.

    Google Scholar 

  • Pileri SA, Sabattini E, Falini B, Tazzari PL, Gherlinzoni F, Michieli MG, Damiani D, Zucchini L, Gobbi M, Tsuruo T and Baccarani M (1991) Immunohistochemical detection of the multidrug transport protein P170 in human normal tissues and malignant lymphomas. Histopathology 91: 131–140.

    Google Scholar 

  • Pirker R, Wallner J, Geissler K, Linkesch W, Haas OA, Bettelheim P, Hopfner M, Scherrer R, Valent P, Havelec L, Ludwig H and Lechner K (1991)mdr1 Gene expression and treatment outcome in acute myeloid leukaemia. J Natl Cancer Inst 83: 708–712.

    Google Scholar 

  • Prokocimer M, Shaklai M, Ben Bassat H, Wolf D, Goldfinger N and Rotter V (1986) Expression of p53 in human Joukaemia and lymphoma. Blood 68: 113–118.

    Google Scholar 

  • Roninson IB, Chin JE, Choi K, Gros P, Housman DE, Fojo A, Shen DW, Gottesman MM and Pastan I (1986) Isolation of humanmdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. Proc Natl Acad Sci USA 83: 4538–4542.

    Google Scholar 

  • Roninson IB (1991) Molecular and Cellular Biology of Multidrug Resistance in Tumour Cells. New York: Plenum Press.

    Google Scholar 

  • Rothenberg ML, Mickley LA, Cole DE, Balis FM, Tsuruo T, Poplack DG and Fojo AT (1989) Expression of themdr-1/P-170 gene in patients with acute lymphoblastic leukemia. Blood 74: 1388–1395.

    Google Scholar 

  • Salmon SE, Grogan TM, Miller T, Scheper R and Dalton WS (1989) Prediction of doxorubicin resistancein vitro in myeloma, lymphoma, and breast cancer by P-glycoprotein staining. J Natl Cancer Inst 81: 696–701.

    Google Scholar 

  • Salmon SE, Dalton WS, Grogan TM, Plezia P, Lehnert M, Roe DJ and Miller TP (1991) Multidrug-resistant myeloma: laboratory and clinical effects of verapamil as a chemosensitizer. Blood 78: 44–50.

    Google Scholar 

  • Sato H, Preisler H, Day R, Raza A, Larson R, Browman G, Goldberg J, Vogler R, Grunwald H, Gottlieb A, Bennett J, Gottesman M and Pastan I (1990a) MDR1 transcript levels as an indication of resistant disease in acute myelogenous leukaemia. Br J Haematol 75: 340–345.

    Google Scholar 

  • Sato H, Gottesman MM, Goldstein LJ, Pastan I, Block AM, Sandberg AA and Preisler HD (1990b) Expression of the multidrug resistance gene in myeloid leukemias. Leukemia Res 14: 11–22.

    Google Scholar 

  • Schinkel AH, Roelofs MEM and Borst P (1991) Characterization of the humanmdr3 P-glycoprotein and its recognition by P-glycoprotein-specific monoclonal antibodies. Cancer Res 51: 2628–2635.

    Google Scholar 

  • Schluesener HJ, Koeppel C and Jung S (1992) Multidrug transport in human autoimmune T line cells and peripheral blood lymphocytes. Immunopharmacology 23: 37–48.

    Google Scholar 

  • Shen WP, Aldrich TH, Venta-Perez G, Franza BR and Furth ME (1987) Expression of normal and mutantras proteins in human acute leukaemia. Oncogene 1: 157–165.

    Google Scholar 

  • Shustik C, Groulx N and Gros P (1991) Analysis of multidrug resistance (MDR1) gene expression in chronic lymphocytic leukaemia (CLL). Br J Haematol 79: 50–56.

    Google Scholar 

  • Solary E, Bidan JM, Calvo F, Chauffert B, Caillot D, Mugneret F, Gauville C, Tsuruo T, Carli PM and Guy H (1991) P-glycoprotein expression and in vitro reversion of doxorubicin resistance by verapamil in clinical specimens from acute leukaemia and myeloma. Leukemia 5: 592–597.

    Google Scholar 

  • Sonneveld P and Nooter K (1990) Reversal of drug-resistance by cyclosporin-A in a patient with acute myelocytic leukaemia. Br J Haematol 75: 208–211.

    Google Scholar 

  • Sonneveld P, Nooter K, Burghouts JThM, Herweijer H, Adriaansen HJ and van Dongen JJM (1992a) High expression of themdr3 multidrug resistance gene in advanced stage chronic lymphocytic leukemia. Blood 70: 1496–1500.

    Google Scholar 

  • Sonneveld P, Durie BGM, Lokhorst HM, Marie JP, Solbu G, Suciu S, Zittoun R, Lowenberg B and Nooter K (1992b) Modulation of multidrug resistant multiple myeloma by cyclosporin. Lancet 340: 255–259.

    Google Scholar 

  • Sonneveld P, Durie BGM, Lokhorst HM, Frutiger Y, Schoester M and Vela EE (1993) Analysis of multidrug-resistance (MDR-1) glycoprotein and CD56 expression to separate monoclonal gammopathy from multiple myeloma. Br J Haematol 83: 63–67.

    Google Scholar 

  • Speeg KV, Maldonado AL, Liaci J and Muirhead D (1992) Effect of cyclosporin on colchicine secretion by a liver canalicular transporter studiedin vivo. Hepatology 15: 899–903.

    Google Scholar 

  • Tanimura H, Kohno K, Sato S, Uchiumi T, Miyazaki M, Kobayashi M and Kuwano M (1992) The human multidrug resistance 1 promoter has an element that responds to serum starvation. Biochem Biophys Res Commun 183: 917–924.

    Google Scholar 

  • Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I and Willingham MC (1987) Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci USA 84: 7735–7738.

    Google Scholar 

  • Toksoz D, Farr CJ and Marshall CJ (1987)Ras gene activation in a minor proportion of the blast population in acute myeloid leukaemia. Oncogene 1: 409–413.

    Google Scholar 

  • Tsuruo T, Iida H, Tsukagoshi S and Sakurai Y (1981) Overcoming of vincristine resistance in P388 leukemiain vivo andin vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res 41: 1967–1972.

    Google Scholar 

  • Tsuruo T, Sugimoto Y, Hamada H, Roninson I, Okumura M, Adachi K, Morishima Y and Ohno R (1987) Detection of multidrug resistance markers, P-glycoprotein andmdr1 mRNA, in human leukemia cells. Jpn J Cancer Res (Gann) 78: 1415–1419.

    Google Scholar 

  • Twentyman PR (1992) Cyclosporins as drug resistance modifiers. Biochem Biopharmacol 43: 109–117.

    Google Scholar 

  • Ueda K, Cardarelli C, Gottesman MM and Pastan I (1987) Expression of a full-length cDNA for the human “MDR1” gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc Natl Acad Sci USA 84: 3004–3008.

    Google Scholar 

  • Valverde MA, Diaz M, Sepulveda FV, Gill DR, Hyde SC and Higgens CF (1992) Volume-regulated chloride channels associated with the human multidrug-resistance P-glycoprotein. Nature 355: 830–833.

    Google Scholar 

  • Van der Bliek AM, Baas F, ten Houte-de Lange T, Kooiman PM, van der Velde-Koerts T and Borst P (1987) The humanmdr3 gene encodes a novel P-glycoprotein homologue and gives rise to alternatively spliced mRNAs in liver. EMBO J 6: 3325–3331.

    Google Scholar 

  • Van der Bliek AM, Kooiman PM, Schneider C and Borst P (1988a) Sequence ofmdr3 cDNA encoding a human P-glycoprotein. Gene 71: 401–411.

    Google Scholar 

  • Van der Bliek AM, Baas F, van der Velde-Koerts T, Biedler JL, Meyers MB, Ozols RF, Hamilton TC, Joenje H and Borst P (1988b). Genes amplified and overexpressed in human multidrug-resistant cell lines. Cancer Res 48: 5927–5932.

    Google Scholar 

  • Van der Bliek AM and Borst P (1989) Multidrug-resistance. In: GF van de Woude and G Klein (eds) Advances in Cancer Research 52 (pp. 165–203). New York: Acad. Press.

    Google Scholar 

  • Van der Valk P, van Kalken CK, Ketelaars H, Broxterman HJ, Scheffer G, Kuiper CM, Tsuruo T, Lankelma J, Meijer CJLM, Pinedo HM and Scheper RJ (1990) Distribution of multidrug resistance-associated P-glycoprotein in normal and neoplastic human tissues. Ann Oncol 1: 56–64.

    Google Scholar 

  • Visser JWM and van Bekkum DW (1990) Purification of pluripotent hematopoietic stem cells: past and present. Exp Hematol 18: 248–256.

    Google Scholar 

  • Weide R, Dowding C, Paulsen W and Goldman J (1990) The role of the MDR-1/P-170 mechanism in the development of multidrug resistance in chronic myeloid leukemia. Leukemia 4: 695–699.

    Google Scholar 

  • Wittebol S, te Boekhorst P, Hagemeijer A, van Dongen JJM, Schoester M and Sonneveld P (1992) Expression of the multidrug resistance (mdr-1) phenotype in acute myelocytic leukemia is associated with CD34 expression and monosomy 7 and predicts for poor survival. Blood 80: 202a.

    Google Scholar 

  • Yahanda AM, Adler KM, Fischer GA, Brophy NA, Halsey R, Hardy RI, Gosland MP, Lum BL and Sikic BI (1992) Phase I trial of etoposide with cyclosporin as a modulator of multidrug resistance. J Clin Oncol 10: 1642–1643.

    Google Scholar 

  • Zhou DC, Marie JP, Suberville AM and Zittoun R (1992) Relevance ofmdr1 gene expression in acute myeloid leukemia and comparison of different diagnostic methods. Leukemia 6: 879–885.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nooter, K., Sonneveld, P. Multidrug resistance (MDR) genes in haematological malignancies. Cytotechnology 12, 213–230 (1993). https://doi.org/10.1007/BF00744665

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00744665

Key words

Navigation