Skip to main content
Log in

Theory vs. experiment: A holistic philosophy of physics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We present a holistic description of physical systems and how they relate to observations. The “theory” is established (geometrically) as a “classical random field theory.” The basic system variables are related to Lie group generators: the conjugate variables define observer parameters. The dichotomy between system and observer leads to acommunication channel relationship. The distortion measure on the channel distinguishes “classical” from “quantum” theories. The experiment is defined in terms that accommodate precision and unreliability. Information theory methods permit stochastic inference (this includes “inverse scattering”) and prediction based on realistic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Laue,Found. Phys. 8, 1 (1977).

    Google Scholar 

  2. M. Jammer,The Philosophy of Quantum Mechanics (Wiley, New York, 1974).

    Google Scholar 

  3. J. M. Jauch,Foundations of Quantum Mechanics (Addison-Wesley, New York, 1968).

    Google Scholar 

  4. R. H. Dicke and J. P. Wittke,Introduction to Quantum Mechanics (Addison-Wesley, Reading, Massachusetts, 1960).

    Google Scholar 

  5. A. Messiah,Quantum Mechanics, Vol. 1 (Wiley, New York, 1966).

    Google Scholar 

  6. F. Selleri, inFoundations of Quantum Mechanics, B. d'Espagnat, ed. (Academic Press, New York, 1971), p. 398.

    Google Scholar 

  7. J. F. Cyranski,J. Math. Phys. 23, 1074 (1982).

    Google Scholar 

  8. A. Bach,J. Math. Phys. 21, 789 (1980).

    Google Scholar 

  9. A. Bach,J. Math. Phys. 23, 1078 (1982).

    Google Scholar 

  10. S. Watanabe,Inform. Contr. 15, 1 (1969).

    Google Scholar 

  11. E. Lubkin, inFoundations of Probability Theory, W. L. Harper and C. A. Hooker, eds.;Statistical Inference and Statistical Theories of Science (Reidel, Dordrecht, 1976), Vol. 3, p. 143.

    Google Scholar 

  12. R. Feynman, R. B. Leighton, and M. Sands,Lectures on Physics (Addison-Wesley, Reading, Massachusetts, 1963), Vol. 1.

    Google Scholar 

  13. P. Carruthers and M. M. Nieto,Rev. Mod. Phys. 40, 411 (1968).

    Google Scholar 

  14. Z. Haba and A. A. Nowicki,Phys. Rev. D 13, 523 (1976).

    Google Scholar 

  15. J. F. Cyranski, “Information Theory and the Problem of Molecular Structure”Found. Phys. (to appear); J. Rayski,Found. Phys. 1, 89 (1973).

    Google Scholar 

  16. A. Bohm,J. Math. Phys. 21, 1041 (1980); M. U. Farrukh,J. Math. Phys. 16, 177 (1975).

    Google Scholar 

  17. P. A. M. Dirac,Principles of Quantum Mechanics (Oxford University Press, Oxford, 1958), 4th edn.

    Google Scholar 

  18. J. von Neumann,Mathematical Foundations of Quantum Mechnics, translated by R. T. Beyer (Princeton University Press, Princeton, 1955).

    Google Scholar 

  19. G. E. Chamberlain, S. R. Mielczarek, and C. E. Kuyatt,Phys. Rev. A 2, 1905 (1970).

    Google Scholar 

  20. E. Merzbacher,Quantum Mechanics (Wiley, New York, 1970), 2nd. edn.

    Google Scholar 

  21. R. G. Gallager,Information Theory and Reliable Communication (Wiley, New York, 1966).

    Google Scholar 

  22. R. Hermann,Lie Groups for Physicists (Benjamin/Cummings, Reading, Massachusetts, 1966).

    Google Scholar 

  23. V. S. Varadajaran,Geometry of Quantum Theory (Van Nostrand Reinhold, New York, 1970). Vol. 2.

    Google Scholar 

  24. L. Brillouin,Science and Information Theory (Academic Press, New York, 1962), 2nd. edn.

    Google Scholar 

  25. V. S. Varadajaran,Lie Groups, Lie Algebras, and Their Representations (Prentice Hall, Englewood Cliffs, New Jersey, 1974).

    Google Scholar 

  26. K. Kuratowski,Topology, translated by A. Kirkor (Academic Press, New York, 1968), Vol. 2.

    Google Scholar 

  27. A. V. Skorohod,Integration in Hilbert Space (Springer-Verlag, New York, 1974).

    Google Scholar 

  28. T. Berger,Rate Distortion Theory (Prentice-Hall, Englewood Cliffs, New Jersey, 1971).

    Google Scholar 

  29. B. Forte,R.I.R.O. R-2, 63 (1969); M. Mastrangelo and V. Mastrangelo,Ann. Inst. Henri Poincaré 30, 295 (1979).

    Google Scholar 

  30. L. A. Zadeh,Inform. Contr. 8, 388 (1965).

    Google Scholar 

  31. S. T. Ali and H. D. Doebner,J. Math. Phys. 17, 1105 (1976); E. B. Davies,Quantum Theory of Open Systems (Academic Press, London, 1976).

    Google Scholar 

  32. J. F. Cyranski,J. Math. Phys. 22, 1467 (1981).

    Google Scholar 

  33. S. Kullback,Information Theory and Statistics (Wiley, New York, 1959); E. T. Jaynes,Proc. IEEE 70, 939 (1982).

    Google Scholar 

  34. W. Ochs,Rep. Math. Phys. 9, 331 (1976).

    Google Scholar 

  35. J. E. Shore and R. W. Johnson,IEEE Trans. Inform. Theory IT-26, 26 (1980).

    Google Scholar 

  36. C. R. Smith and W. T. Grandy, eds.,Maximum-Entropy and Bayesian Methods in Inverse Problems (Proceedings of the Second Workshop on Maximum Entropy and Bayesian Statistics in Applied Statistics, August 9–12, 1982) (Reidel, Dordrecht, 1985).

    Google Scholar 

  37. I. Csiszar,Stud. Sci. Math. Hung. 9, 51 (1974); J. F. Cyranski,Inform. Sci. 24, 217 (1981)

    Google Scholar 

  38. J. F. Cyranski,Found. Phys. 8, 805 (1978).

    Google Scholar 

  39. B. S. DeWitt, inRelativity, Groups, and Topology, C. DeWitt and B. S. DeWitt, eds. (Gordon and Breach, New York, 1964), p. 587.

    Google Scholar 

  40. S. T. Ali,J. Math. Phys. 20, 1385 (1979); S. T. Ali,J. Math. Phys. 21, 818 (1980).

    Google Scholar 

  41. E. Prugovecki,Phys. Rev. Lett. 49, 1065 (1982).

    Google Scholar 

  42. F. E. Schroeck, Jr.,J. Math. Phys. 22, 2562 (1981).

    Google Scholar 

  43. F. E. Schroeck, Jr.,Found. Phys. 12, 825 (1982).

    Google Scholar 

  44. R. Rosenkrantz, inInformation and Inference, J. Hintikka and P. Suppes, eds. (Reidel, Dordrecht, 1970); J. Rothstein,Science 114, 171 (1951).

    Google Scholar 

  45. R. Newton,Am. J. Phys. 48, 1029 (1980); F. J. Belinfante,Measurements and Time Reversal in Objective Quantum Theory (Pergamon, Oxford, 1975).

    Google Scholar 

  46. R. Carnap,Logical Foundations of Probability (University of Chicago Press, Chicago, 1950).

    Google Scholar 

  47. L. D. Landau and E. M. Lifshitz,Statistical Physics (Pergamon, Oxford, 1959).

    Google Scholar 

  48. E. T. Jaynes,Phys. Rev. 106, 620 (1957);108, 171 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cyranski, J.F. Theory vs. experiment: A holistic philosophy of physics. Found Phys 15, 753–771 (1985). https://doi.org/10.1007/BF00739845

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00739845

Keywords

Navigation