Skip to main content
Log in

On the nonoccurrence of two paradoxes in the measurement scheme of stochastic quantum mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The internal paradoxes in the quantum measurement scheme related to violation of conservation laws, changes in entropy, absence of a dynamic description of collapse, Wigner's friend, as well as the paradox of violation of causality in the EPR experiment are shown to be partially circumvented in the measurement scheme of stochastic quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Wehrl,Rev. Mod. Phys. 50, 221–260 (1978).

    Google Scholar 

  2. W. Guz,Int. J. Theor. Phys. 23, 157–184 (1984).

    Google Scholar 

  3. F. E. Schroeck, Jr.,Found. Phys. 12, 825–841 (1982).

    Google Scholar 

  4. F. E. Schroeck, Jr., “Measures with Minimum Uncertainty on Non-Commutative Algebras with Application to Measurement Theory in Quantum Mechanics,” inMathematical Foundations of Quantum Theory, A Marlow, ed. (Academic Press, New York, 1978), pp. 299–327.

    Google Scholar 

  5. F. E. Schroeck, Jr., “Measurement Theory with Instruments Treated Partially Quantum Mechanically,” inClassical, Semiclassical, and Quantum Mechanical Problems in Mathematics, Chemistry, and Physics, K. E. Gustafson and W. P. Reinhardt, eds. (Plenum, New York, 1981).

    Google Scholar 

  6. F. E. Schroeck, Jr.,J. Math. Phys. 22, 2562–2572 (1981).

    Google Scholar 

  7. F. E. Schroeck, Jr.,Found. Phys. 12, 479–497 (1982).

    Google Scholar 

  8. E. B. Davies,J. Funct. Anal. 6, 318–346 (1970).

    Google Scholar 

  9. S. T. Ali and E. Prugovečki,J. Math. Phys. 18, 219–228 (1977).

    Google Scholar 

  10. E. Prugovečki,J. Math. Phys. 19, 2260–2270 (1978).

    Google Scholar 

  11. S. T. Ali,J. Math. Phys. 20, 1385–1391 (1979);21, 818–829 (1980).

    Google Scholar 

  12. S. T. Ali and E. Prugovečki,Physica A 89, 501–521 (1977).

    Google Scholar 

  13. M. D. Srinivas,J. Math. Phys. 16, 1672–1685 (1975), and references cited therein.

    Google Scholar 

  14. J. von Neumann,Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955).

    Google Scholar 

  15. M. Grabowski,Rep. Math. Phys. 14, 377–384 (1978).

    Google Scholar 

  16. T. Kato,Pertubation Theory for Linear Operators (Springer-Verlag, New York, 1966).

    Google Scholar 

  17. H. Sagan,Introduction to the Calculus of Variations (McGraw-Hill, New York, 1969).

    Google Scholar 

  18. R. Benoist, J.-P. Marchand, and W. Wyss,Lett. Math. Phys. 3, 169–173 (1979).

    Google Scholar 

  19. E. Ruch,Theor. Chim. Acta (Berlin) 38, 167–183 (1975); E. Ruch and A. Mead,Theor. Chim. Acta. (Berlin) 41, 95–117 (1976); F. Herbut and I. D. Ivanović,J. Phys. A: Math. Gen. 15, 1775–1783 (1982).

    Google Scholar 

  20. A. Wehrl,Rep. Math. Phys. 6, 15–28 (1974).

    Google Scholar 

  21. E. Wigner, “The Subject of Our Discussions,” inFoundations of Quantum Mechanics, B. d'Espagnat, ed. (Academic Press, New York, 1971), pp. 1–19, especially p. 17.

    Google Scholar 

  22. G. C. Ghirardi, A. Rimini, and T. Weber,J. Math. Phys. 23, 1792–1796 (1982).

    Google Scholar 

  23. F. E. Schroeck, Jr., “A Note on the Fields in Quantum Space-time,” Florida Atlantic University preprint (1983).

  24. M. Grabowski,Int. J. Theor. Phys. 17, 635–641 (1978).

    Google Scholar 

  25. A. Einstein, B. Podolsky, and N. Rosen,Phys. Rev. 47, 777–780 (1935).

    Google Scholar 

  26. N. F. Mott and H. S. W. Massey,The Theory of Atomic Collisions, 3rd ed. (Oxford University Press, London, 1965), pp. 210–258.

    Google Scholar 

  27. W. Gerlach and O. Stern,Ann. Phys. 9, 349–352 (1922); J. B. Taylor,Phys. Rev. 28, 576–582 (1926).

    Google Scholar 

  28. J. S. Bell,Physics 1, 195–200 (1964);Rev. Mod. Phys. 38, 447–452 (1966).

    Google Scholar 

  29. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt,Phys. Rev. Lett. 23, 880–884 (1969).

    Google Scholar 

  30. J. S. Bell, “Introduction to the Hidden-Variable Question,” inFoundations of Quantum Mechanics, B. d'Espagnat, ed. (Academic Press, New York, 1971), pp. 171–181;Science 177, 880–881 (1972).

    Google Scholar 

  31. W. G. Faris,Found. Phys. 12, 1–26 (1982).

    Google Scholar 

  32. A. S. Wightman,Rev. Mod. Phys. 34, 845–872 (1962).

    Google Scholar 

  33. S. T. Ali and G. G. Emch,J. Math. Phys. 15, 176–182 (1974).

    Google Scholar 

  34. E. Prugovečki,J. Math. Phys. 19, 2271–2277 (1978).

    Google Scholar 

  35. D. P. Greenwood and E. Prugovečki,Found. Phys. 14, 883–906 (1984).

    Google Scholar 

  36. S. T. Ali and E. Prugovečki, “Extended Harmonic Analysis of Phase Space Representations for the Galilei Group,” University of Toronto preprint (1983).

  37. K. Gottfried,Quantum Mechanics, I (W. A. Benjamin, New York, 1966), p. 178, Eq. (13).

    Google Scholar 

  38. M. Cini,Nuovo Cimento B 73, 27–56 (1983).

    Google Scholar 

  39. K. Gottfried,Quantum Mechanics, I (W. A. Benjamin, New York), p. 177, Eq. (10).

  40. K. Gottfried,Quantum Mechanics, I (W. A. Benjamin, New York), Section 19.5.

  41. J. C. Nestor,Stochastic Spin Entropy, Thesis, Florida Atlantic University, December 1983.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schroeck, F.E. On the nonoccurrence of two paradoxes in the measurement scheme of stochastic quantum mechanics. Found Phys 15, 279–302 (1985). https://doi.org/10.1007/BF00737318

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00737318

Keywords

Navigation