Skip to main content
Log in

Geometry as an aspect of dynamics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Contrary to the predominant way of doing physics, we claim that the geometrical structure of a general differentiable space-time manifold can be determined from purely dynamical considerations. Anyn-dimensional manifoldV a has associated with it a symplectic structure given by the2n numbersp andx of the2n-dimensional cotangent fiber bundle TVn. Hence, one is led, in a natural way, to the Hamiltonian description of dynamics, constructed in terms of the covariant momentump (a dynamical quantity) and of the contravariant position vectorx (a geometrical quantity). That is, the Hamiltonian description furnishes a natural way of relating dynamics and geometry. Thus, starting from the Hamiltonian state function (for a particle)—taken as the fundamental dynamical entity—we show that general relativistic physics implies a general pseudo-Riemannian geometry, whereas the physics of the special theory of relativity is tied up with Minkowski space-time, and nonrelativistic dynamics is bound up to Newton-Cartan space-time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Penrose, inBattelle 1967 Rencontres, C. M. Dewitt and J. A. Wheeler, eds. (Benjamin, New York, 1968).

    Google Scholar 

  2. E. Cartan,Ann. École Norm. 40, 325 (1923);41, 1 (1924).

    Google Scholar 

  3. E. Cartan,Bull. Math. Soc. Roum. Sci. 35, 69 (1933).

    Google Scholar 

  4. A. Trautman, inBrandeis Summer Institute in Theoretical Physics, Lectures on General Relativity (Prentice-Hall, New Jersey, 1964).

    Google Scholar 

  5. M. Schönberg,Nuovo Cimento Suppl. 6, 356 (1957); C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation (W. H. Freeman, San Francisco, 1973).

    Google Scholar 

  6. J. A. Schouten,Tensor Analysis for Physicists (Clarendon Press, Oxford, 1951).

    Google Scholar 

  7. M. Schönberg,An. Acad. Bras. Ci. 28, 11 (1956).

    Google Scholar 

  8. M. Schönberg and A. L. Rocha Barros,Rev. Union. Mat. Argentina 20, 239 (1960).

    Google Scholar 

  9. V. Arnold,Let méthodes mathématiques de la mécanique classique (Mir Press, Moscow, 1976).

    Google Scholar 

  10. C. C. Chevalley,The Algebraic Theory of Spinors (Columbia University Press, New York, 1954).

    Google Scholar 

  11. G. M. Thomas,Riv. Nuovo Cimento 3, 4 (1980).

    Google Scholar 

  12. V. Rohlin and D. Fuchs,Premier cours de topologie, Chapitres géométriques (Mir Press, Moscow, 1981).

    Google Scholar 

  13. M. Schönberg,Acta Phys. Austriaca,38, 168 (1973).

    Google Scholar 

  14. V. Kaplunovski and M. Weinstein, SLAC-PUB-3156, July 1983 (submitted toNucl. Phys.).

  15. W. G. Dixon,Special Relativity—The Foundation of Macroscopic Physics (Cambridge University Press, Cambridge, 1978).

    Google Scholar 

  16. P. Langevin,La Physique Depuis Vingt Ans (Doin, Paris, 1923).

    Google Scholar 

  17. P. Costabel,Leibniz et la Dynamique en 1962, Textes et Commentaires (J. Vrin, Paris, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Videira, A.L.L., Barros, A.L.R. & Fernandes, N.C. Geometry as an aspect of dynamics. Found Phys 15, 1247–1262 (1985). https://doi.org/10.1007/BF00735532

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00735532

Keywords

Navigation