Skip to main content
Log in

The longitudinally split vascularized fibula with a vascularized periosteal flap for the reconstruction of large segmental bone defects of the tibia

An experimental work on baboons

  • Originals
  • Published:
European Journal of Plastic Surgery Aims and scope Submit manuscript

Summary

A new principle in reconstructive surgery is presented: “The immediate reconstruction of a missing bone segment with a primary osteoperiosteal tube that will secondarily be transformed into a complete osseous tube. ” In 5 out of 7 baboons, a bone tube with an almost normal bone cavity was achieved after 16 to 28 weeks. In 2 cases, we failed to reconstruct the tube because of an intraoperative fault and postoperative plate fracture with subsequent destruction of the vascularized periosteal flap. On the basis of this study, we describe a new concept in reconstruction of segmental bone defects of the lower extremity. The osteoperiosteal tube is formed by the combination of two successful experimental and clinical techniques: the vascularized fibular transfer which is modified by splitting the bone graft longitudinally, and transfer of vascularized periosteum (“concept of the substitution of a missing bone segment by an organ-like tube”). In the most stressed marginal region of the bone defect, there is vascularized cortical bone from the longitudinally split fibular graft and an increasing amount of lamellar bone being produced under the vascularized periosteal flap. By splitting the graft, nutrition depends entirely on the periosteal blood supply. The “concept of the dual blood supply” was initially described by Berggren et al. and Papanastasiou et al. [4, 18]. The significance of the “concept of the vascularized periosteum transfer for reconstruction of a segmental bone defect” is well illustrated. Only in cases where the vascularized periosteal flap was intact and securely sutured to the fibulae graft and the two tibia stumps could a bone tube be reconstructed. The arrangement of both vascularized grafts as an osteoperiosteal tube exemplify the “concept of the given space” as described by Stock et al. [26]. Inside the osteoperiosteal tube, a “consolidation chamber” is created in which all the factors required for bone formation can be concentrated. Comparison of the results of successfully reconstructed bone tubes with the solid bone column in the defect of the baboon where no bone tube could be reconstructed underline the “concept of combination of different vascularized grafts for reconstruction of segmental bone defects in long bone defects of the lower extremity.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arata MA, Wood MG, Cooney WP III (1984) Revascularized segmental diaphyseal bone transfer in the canine: an analysis of viability. J Reconstr Microsurg 1:11–19

    Google Scholar 

  2. Ariyan S (1980) The viability of rib grafts transplanted with the periosteal blood supply. Plast Reconstr Surg 65:140–151

    Google Scholar 

  3. Baudet B, Panconi P, Schoof M, Amarante J, Kaddoura R (1983) The composite fibula and soleus transfer. Int J Microsurg 5:10–26

    Google Scholar 

  4. Berggren A, Weiland AJ, Dorfmann H (1982) Free vascularized bone grafts: factors affecting their survival and ability to heal to recipient bone defects. Plast Reconstr Surg 69:19

    Google Scholar 

  5. Brunelli G, Guizzi PA, Battiston B, Vigasio A (1987) A comparison of vascularized and non-vascularized bone transfer in rabbits: a reontgenographic, scintigraphic and histological evaluation. J Reconstr Microsurg 3:301–307

    Google Scholar 

  6. Davis PK, Mazur JM, Coleman GN (1982) A torsional strength comparison of vascularized and non-vascularized bone grafts. J Biomech 15:875–880

    Google Scholar 

  7. Dell PC, Burchardt H, Glowczewskie FP Jr (1985) A roentgenographic, biomechanical and histological evaluation of vascularized and non-vascularized segmental fibular canine autografts. J Bone Joint Surg [Am] 67:105–112

    Google Scholar 

  8. Doi K, Tominaga S, Shibata T, Izumo (1977) Bone grafts with microvascular anastomoses of vascular pedicles. J Bone Joint Surg [Am] (59):809–815

  9. Finley JM, Acland RD, Wood MB (1978) Revascularized periosteal grafts — a new method to produce functional new bone without bone grafting. Plast Reconstr Surg 61:1–6

    Google Scholar 

  10. Gilbert A (1979) Vascularized transfer of the fibular shaft. Int J Microsurg 1:100–103

    Google Scholar 

  11. Gob JCH, Pho RWH, Kim HM (1986) Biomechanical evaluation of vascularized and non-vascularized bone grafts in dogs. Vortrag auf dem 5. Europ. Kongress für Biomechanik

  12. Haw CS, O'Brien, Kurata T (1978) The microsurgical revascularization of resected segments of tibia in the dog. J Bone Joint Surg [Br] 60:266–269

    Google Scholar 

  13. Hierner R (1991) Der vaskularisierte Fibulatransfer— Literaturüberblick und tierexperimentelle Modifikation. Thesis, Ludwig-Maximilians-University, Munich

    Google Scholar 

  14. Maxquelet A, Gilbert A (1986) Vascularized periosteal free flaps: two cases. Vortrag auf dem europdischen Mikrochirurgenkongress in Nancy

  15. Masquelet A (1989) Personal communication

  16. Mitzumoto S, Tamai S, Goshima J, Yajmia H, Yoshii T, Fukui A, Masuhara K (1986) Experimental study of vascularized tibiofula graft in inbred rats. A preliminary report. J Reconstr Microsurg 3:1–9

    Google Scholar 

  17. Moore JB, Mazur JM, Zehr D, Davis PK, Zook EG (1983) A biomechanical comparison, vascular and conventional autogenous bone grafts. Orthop Rev 12:49–54

    Google Scholar 

  18. Papanastasiou VW, Lalonde DH, Williams HB (1984) The vascular pattern and viability of microvascularized rib grafts based on periosteal circulation. Ann Plast Surg 13:375–380

    Google Scholar 

  19. Partecke BD, Schmidt HGK (1987) Mikrovaskulär übertragene Knochensegmente mit und ohne Weichteilmantel. Hefte Unfallheilkd 185:270–278

    Google Scholar 

  20. Pauwels F (1965) Gesammelte Abhandlungen zur funktionellen Anatomic des Bewegungsapparates. Springer, Berlin Heidelberg New York

    Google Scholar 

  21. Poussa M, Rubak JM, Risila V (1981) Differentiation of the osteochondrenic cells of the periosteum in a chondrotrophic environment. Acta Orthop Scand 52:235–239

    Google Scholar 

  22. Puckett CL, Hurwitz JS, Metzler MH, Silver D (1979) Bone formation by revascularized periosteal and bone grafts, compared with traditional bone grafts. Plast Reconstr Surg 64:361–365

    Google Scholar 

  23. Rahn BA (1976) Die polychrome Sequenzmarkierung. Intravitale Zeitmarkierung zur tierexperimentellen Analyse der Knochen-und Dentinbildung. Med Habschr, Freiburg/Br

    Google Scholar 

  24. Satoh T, Tsuchiya M, Harii K (1983) A vascularized iliac musculoperiosteal free flap transfer — a case report. Br J Plast Surg 36:109–112

    Google Scholar 

  25. Shaffer JW, Field GA, Goldberg VM, Davy DT (1985) Fate of vascularized and nonvascularized autografts. Clin Orthop Relat Res 197:32–43

    Google Scholar 

  26. Stock W (1988) Rekonstruktion von Defekten an der Tibia mit vaskularisiertem Knochen. Habilitationsschrift, Ludwig-Maximilians-Universität, München

    Google Scholar 

  27. Stock W, Hierner R, Manninger J, Stotz R, Wolf K (1991) The iliac crest region, donor site for vascularized bone, periosteum and soft tissue flaps. Ann Plast Surg 26:105–109

    Google Scholar 

  28. Stock W, Hierner R, Wolf K (in press) Der vaskularisierte Periosttransfer. Ein Überblick über ein neues Therapieverfahren. Handchir Mikrochir Plast Chir

  29. Taylor GI, Miller GDH, Ham FJ (1975) The free vascularized bone graft. Plast Reconstr Surg 55:533–544

    Google Scholar 

  30. Tessier J, Bonnel F, Allieu Y (1985) Vascularization, cellular behavior and union of vascularized bone grafts: experimental study in the rabbit. Ann Plast Surg 14:494–504

    Google Scholar 

  31. Weiland AJ, Phillips TW, Randolph MA (1984) Bone grafts: a radiologic, histologic and biomechanical model comparing autografts, allografts and free vascularized bone grafts. Plast Reconstr Surg 74:368–379

    Google Scholar 

  32. Wildenberg van den FAJM, Goris RJA, Boetes C (1983) Revascularized periosteum transplantation. Eur Surg Res 15:110–113

    Google Scholar 

  33. Wildenberg van den FAJM, Goris RJA, Tutein BJE (1984) Free vascularized periosteum transplantation: an experimental study. Br J Plast Surg 37:226–235

    Google Scholar 

  34. Wolf K, Stock W, Hierner R, Glodeck M (1987) The analysis of vascularity, a new morphometrical technique for evaluating cortical structures in long bones. Acta Stereol 6:621–626

    Google Scholar 

  35. Wolf K, Saleh M, Stock W, Hierner R, Breuckmann B (1989) Image analysis of fluorochrome labelled bone specimen with grey-level system or real-time colour system. Acta Stereol 8:151–162

    Google Scholar 

  36. Wood MB (1986) Free vascularized bone transfer for nonunions, segmental gaps and following tumor resection. Orthop 6:810–816

    Google Scholar 

  37. Wood MB, Cooney WP, Irons JB (1985) Skeletal reconstruction by vascularized bone transfer: Indications and results. Mayo Clinic Proc 60:729–734

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stock, W., Hierner, R., Wolf, K. et al. The longitudinally split vascularized fibula with a vascularized periosteal flap for the reconstruction of large segmental bone defects of the tibia. Eur J Plast Surg 14, 181–191 (1991). https://doi.org/10.1007/BF00734423

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00734423

Key words

Navigation