Skip to main content
Log in

The reconciliation of physics with cosmology

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Astronomical observations of redshifts and the cosmic background radiation show that there is a local frame of reference relative to which the solar system has a well-defined velocity. Also, in cosmology the cosmological principle implies the existence of cosmic time and unique local reference frames at all spacetime points. On the other hand, in a fundamental postulate, the theory of special relativity excludes the possibility of the velocity of the Earth from entering into theories of local physics.

The theory put forward in this paper resolves this conflict between local physics and cosmology. The theory retains the essential ingredient of the mathematical structure of special relativity, namely covariance under the Lorentz symmetry group, but changes radically the interpretation of the physical significance of the Lorentz transformation. The theory is based on the postulate that in free space the fundamental interactions in physics are propagated with constant velocity with respect to the local rest frame. In Minkowski spacetime the local rest frame of reference defines a unique time axis and consequently a unique three-dimensional spatial hyperplane. One particularly important result of this is that the theory includes the classical notion of simultaneity. From the fundamental postulate it follows that the equations of local physics, when expressed in terms of the rest frame coordinate system, must be covariant under the Lorentz symmetry group. By the identification of the local rest frame with the (unique) cosmological local reference frame the two theories become mutually consistent.

The effects of the motion of the Earth on laboratory experiments are discussed. It is pointed out that existing experimental data do not discriminate between the present theory and that of special relativity: a proposal for an experimental test is made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. Bergmann,Found. Phys. 1, 17 (1970).

    Google Scholar 

  2. H. Bondi,Observatory 82, 133 (1962).

    Google Scholar 

  3. S. G. Brush,Isis 58, 230 (1967).

    Google Scholar 

  4. J. P. Cedarholm and C. H. Townes,Nature (London) 184, 1350 (1959).

    Google Scholar 

  5. D. C. Champeney, G. R. Isaak, and A. M. Khan,Phys. Lett. 7, 241 (1963).

    Google Scholar 

  6. T. W. Cole,Mon. Not. R. Astr. Soc. 175, 93P (1976).

    Google Scholar 

  7. G. de Vaucouleurs and W. L. Peters,Astrophys. J. 287, 1 (1984).

    Google Scholar 

  8. A. Einstein,Ann. Phys. (Leipzig) 17, 891 (1905).

    Google Scholar 

  9. A. Einstein,Ann. Phys. (Leipzig) 49, 769 (1916).

    Google Scholar 

  10. A. Einstein, unpublished manuscript in the Pierpont Morgan Library, New York City (1921); quoted in Pais, Ref. 25.

  11. G. F. FitzGerald,Science 13, 390 (1889); reproduced in Brush, Ref. 3.

    Google Scholar 

  12. J. C. Hafele and R. E. Keating,Science 177, 166 (1972).

    Google Scholar 

  13. J. C. Hafele and R. E. Keating,Science 177, 168 (1972).

    Google Scholar 

  14. H. J. Hay, S. P. Schiffer, T. E. Cranshaw, and P. A. Egelstaff,Phys. Rev. Lett. 4, 165 (1960).

    Google Scholar 

  15. M. Kline and I. W. Kay,Electromagnetic Theory and Geometrical Optics (Wiley, New York, 1965).

    Google Scholar 

  16. H. A. Lorentz,Versl. Kon. Akad. Wet. Amsterdam 1, 74 (1892).

    Google Scholar 

  17. H. A. Lorentz,Proc. Acad. Sci. Amsterdam 6, 809 (1904).

    Google Scholar 

  18. H. A. Lorentz,The Theory of Electrons (Teubner, Leipzig, 1909).

    Google Scholar 

  19. H. A. Lorentz,Nature (London) 106, 793 (1921).

    Google Scholar 

  20. P. Lubin, T. Villela, G. Epstein, and G. Smoot,Astrophys. J. 298, L1 (1985).

    Google Scholar 

  21. R. K. Luneburg,Mathematical Theory of Optics (University of California, Berkeley, 1964).

    Google Scholar 

  22. H. Minkowski,Nachr. Ges. Wiss. Göttingen 21, 53 (1908).

    Google Scholar 

  23. C. Møller,The Theory of Relativity, 2nd edn. (University Press, Oxford, 1972).

    Google Scholar 

  24. W. Noll,La Méthode Axiomatique dans les Méchaniques Classique et Nouvelles, Colloque International Paris, 1959 (Gauthier-Villars, Paris, 1963), pp. 47–56.

    Google Scholar 

  25. A. Pais,Subtle is the Lord ... (University Press, Oxford, 1982).

    Google Scholar 

  26. W. Pauli,Theory of Relativity (Pergamon, Oxford, 1958).

    Google Scholar 

  27. H. Poincaré,Rend. Circ. Mat. Palermo 21, 129 (1906).

    Google Scholar 

  28. Lord Rayleigh,Philos. Mag. 4, 678 (1902).

    Google Scholar 

  29. H. P. Robertson,Rev. Mod. Phys. 21, 378 (1949).

    Google Scholar 

  30. R. C. Tolman,Relativity Thermodynamics and Cosmology (University Press, Oxford, 1934).

    Google Scholar 

  31. C. Truesdell,A First Course in Rational Continuum Mechanics: Part I, Fundamental Concepts (Academic Press, New York, 1977).

    Google Scholar 

  32. S. Weinberg,Gravitation and Cosmology (Wiley, New York, 1972).

    Google Scholar 

  33. E. T. Whittaker,A History of the Theories of Aether and Electricity (The Modern Theories, 1900–1926) (Nelson, London, 1953).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Address for the academic year 1990–1991: 415 Graduate Studies Research Center, University of Georgia, Athens, Georgia 30602.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliver, M.A. The reconciliation of physics with cosmology. Found Phys 21, 665–689 (1991). https://doi.org/10.1007/BF00733276

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00733276

Keywords

Navigation