Advertisement

Foundations of Physics

, Volume 21, Issue 8, pp 871–888 | Cite as

Geometric quantization of the five-dimensional Kepler problem

  • Ivailo M. Mladenov
Article

Abstract

An extension of the Hurwitz transformation to a canonical transformation between phase spaces allows conversion of the five-dimensional Kepler problem into that of a constrained harmonic oscillator problem in eight dimensions. Thus a new regularization of the Kepler problem is established. Then, following Dirac, we quantize the extended phase space, imposing constraint conditions as superselection rules. In that way the interchangeability of the reduction and the quantization procedures is proved.

Keywords

Phase Space Harmonic Oscillator Constraint Condition Extended Phase Canonical Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Moser,Commun. Pure Appl. Math. 23, 609 (1970).Google Scholar
  2. 2.
    V. Guillemin and S. Sternberg,Geometric Asymptotics (American Mathematical Society, Providence, Rhode Island, 1977).Google Scholar
  3. 3.
    S. Kobayashi and K. Nomizu,Foundations of Differential Geometry, Vol. 2 (Interscience, New York, 1969).Google Scholar
  4. 4.
    I. Mladenov and V. Tsanov,J. Geom. Phys. 2, 17 (1985).Google Scholar
  5. 5.
    N. Woodhouse,Geometric Quantization (Clarendon, Oxford, 1980).Google Scholar
  6. 6.
    J. Rawnsley,Q. J. Math. 28, 403 (1977).Google Scholar
  7. 7.
    C. Duval, J. Elhadad, and G. M. Tuynman, Marseille preprint CPT-89/P.2248.Google Scholar
  8. 8.
    M. Bander and C. Itzykson,Rev. Mod. Phys. 38, 330 (1966).Google Scholar
  9. 9.
    J.-P. Gazeau, Univ. Paris VII Internal Report, March 1988.Google Scholar
  10. 10.
    D. Lambert and M. Kibler,J. Phys. A 21, 307 (1988).Google Scholar
  11. 11.
    M. Kibler and P. Winternitz,J. Phys. A 21, 1787 (1988).Google Scholar
  12. 12.
    M. Kibler and T. Negadi,Croat. Chem. Acta 57, 1509 (1984).Google Scholar
  13. 13.
    L. Davtyan, G. Mardoyan, G. Pogosyan, S. Sissakian, and V. Ter-Antonyan,J. Phys. A 20, 6121 (1987).Google Scholar
  14. 14.
    R. Abraham and J. Marsden,Foundations of Mechanics (Benjamin, New York, 1978).Google Scholar
  15. 15.
    P. Liberman and C. Marle,Symplectic Geometry and Analytical Mechanics (Reidel, Dordrecht, 1987).Google Scholar
  16. 16.
    M. Kummer,Indiana Univ. Math. J. 30, 281 (1981).Google Scholar
  17. 17.
    J. Marsden and A. Weinstein,Rep. Math. Phys. 5, 121 (1974).Google Scholar
  18. 18.
    P. M. Quan, Proc. IUTAM-ISIMM Symposium,Atti. Acad. Sci. Torino 117S, 341 (1983).Google Scholar
  19. 19.
    B. Kostant,Lecture Notes in Mathematics, Vol. 170 (Springer, Berlin, 1970), p. 87.Google Scholar
  20. 20.
    J. M. Souriau,Structure des Systèmes Dynamiques (Dunod, Paris, 1970).Google Scholar
  21. 21.
    V. Guillemin and S. Sternberg,Invent. Math. 67, 491 (1982).Google Scholar
  22. 22.
    M. Puta,Lett. Math. Phys. 8, 189 (1984).Google Scholar
  23. 23.
    M. Gotay,J. Math. Phys. 27, 2051 (1986).Google Scholar
  24. 24.
    R. Gilmore,Lie Groups, Lie Algebras, and Some of Their Applications (Wiley, New York, 1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Ivailo M. Mladenov
    • 1
  1. 1.Central Laboratory of BiophysicsBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations