Skip to main content
Log in

Geometrization of the physics with teleparallelism. I. The classical interactions

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A connection viewed from the perspective of integration has the Bianchi identities as constraints. It is shown that the removal of these constraints admits a natural solution on manifolds endowed with a metric and teleparallelism. In the process, the equations of structure and the Bianchi identities take standard forms of field equations and conservation laws.

The Levi-Civita (part of the) connection ends up as the potential for the gravity sector, where the source is geometric and tensorial and contains an explicit gravitational contribution.

Nonlinear field equations for the torsion result. In a “low-energy” approximation (linearity andlow energy-momentumtransfer), the postulate that only charge and velocities contribute to the source transforms these equations into the Maxwell system. Moreover, the affine geodesics become the equations of motion of special relativity with Lorentz force in the same approximation [J. G. Vargas,Found. Phys. 21, 379 (1991)]. The field equations for the torsion must then be viewed as applying to an electromagnetic/strong interaction.

A classical unified theory thus arises where the underlying geometry confers their contrasting characters to Maxwell-Lorentz electrodynamics and to an Einstein's-like theory of gravity. The highly compact field equations must, however, be developed in phase-spacetime, since the connection is velocity-dependent, i.e., Finsler-like.

Further opportunities for similarities with present-day physics are discussed: (a) teleparallelism allows for the formulation of the torsion sector of the theory as a flat space theory with concomitant point-dependent transformations; (b) spinors should replace Lorentz frames in their role as the subjects to which the connection refers; (c) the Dirac equation consistent with the frame bundle for a velocity-dependent metric with Lorentz signature generates a weak-like interaction in the torsion sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. H. Clifton,J. Math. Mech. 16, 569 (1966).

    Google Scholar 

  2. E. Cartan,C. R. Acad. Sci. (Paris) 174, 1104 (1922).

    Google Scholar 

  3. J. G. Vargas, D. G. Torr, and A. Lecompte,Found. Phys. 22, 527 (1992).

    Google Scholar 

  4. J. G. Vargas and D. G. Torr,Found. Phys. 19, 269 (1989).

    Google Scholar 

  5. J. G. Vargas and D. G. Torr,Nucl. Phys. B (Proc. Suppl.) 6, 115 (1989).

    Google Scholar 

  6. J. G. Vargas,Found. Phys. 21, 379 (1991).

    Google Scholar 

  7. A. Einstein,Ann. Inst. Henri Poincaré 1, 1 (1930).

    Google Scholar 

  8. E. Cartan and A. Einstein,Letters on Absolute Parallelism, 1929–1932, R. Debever, ed. (Princeton University Press, Princeton, New Jersey, 1979).

    Google Scholar 

  9. A. Lichnerowicz,Elements of Tensor Calculus (Wiley, New York, 1962).

    Google Scholar 

  10. J. G. Vargas and D. G. Torr,Gen. Relativ. Gravit. 23, 713 (1991).

    Google Scholar 

  11. E. Kaehler,Abh. Dtsch. Akad. Wiss. Berlin, Kl. für Math., Phys. Tech., No. 4, 1960.

  12. E. Cartan,J. Math. Pures Appl. 1, 141 (1922).

    Google Scholar 

  13. E. Cartan,Exposés de Géométrie (Hermann, Paris, 1971), reprinted fromActualités Scientifiques et Industrielles 72 and79 (1933).

    Google Scholar 

  14. S. Chern,Am. Math. Mon. 97, 679 (1990).

    Google Scholar 

  15. E. Cartan, “Leçons sur les Invariants Intégraux” (Hermann, Paris, 1971).

    Google Scholar 

  16. A. Bejancu,Finsler Geometry and Applications (Horwood, Chichester, England, 1990).

    Google Scholar 

  17. E. Cartan,Bull. Soc. Math. 48, 294 (1924).

    Google Scholar 

  18. D. Hestenes,Spacetime Algebra (Harper & Row, New York, 1967).

    Google Scholar 

  19. J. G. Vargas,Found. Phys. 12, 765 (1982).

    Google Scholar 

  20. J. G. Vargas and D. G. Torr,Found. Phys. 16, 1089 (1986).

    Google Scholar 

  21. J. G. Vargas,Found. Phys. 16, 1231 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work done at the Department of Mathematics and Physics of the Interamerican University of Puerto Rico, San German, Puerto Rico 00683.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vargas, J.G. Geometrization of the physics with teleparallelism. I. The classical interactions. Found Phys 22, 507–526 (1992). https://doi.org/10.1007/BF00732920

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00732920

Keywords

Navigation