Skip to main content
Log in

Phase-space path integration of the relativistic particle equations

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Hamilton-Jacobi theory is applied to find appropriate canonical transformations for the calculation of the phase-space path integrals of the relativistic particle equations. Hence, canonical transformations and Hamilton-Jacobi theory are also introduced into relativistic quantum mechanics. Moreover, from the classical physics viewpoint, it is very interesting to find and to solve the Hamilton-Jacobi equations for the relativistic particle equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. P. Feynman, “An operator calculus having applications in quantum electrodynamics,”Phys. Rev. 84, 108 (1951), Appendix B.

    Google Scholar 

  2. L. van Hove, “Sur le problème des relations entre les transformations unitaires de la mécanique quantique et les transformations canoniques de la mécanique classique,”Mem. Acad. R. Belg. 26, 610 (1951).

    Google Scholar 

  3. W. Tobocman, “Transition amplitudes as sums over histories,”Nuovo Cimento 3, 1213 (1956).

    Google Scholar 

  4. S. S. Schweber, “On Feynman quantization,”J. Math. Phys. 3, 831 (1962).

    Google Scholar 

  5. H. Davies, “Hamiltonian approach to the method of summation over Feynman histories,”Proc. Cambridge Philos. Soc. 59, 147 (1963).

    Google Scholar 

  6. M. C. Gutzwiller, “Phase-integral approximation in momentum space and the bound states of an atom,”J. Math. Phys. 8, 1979 (1967).

    Google Scholar 

  7. P. Pearle, “Finite-dimensional path summation formulation for quantum mechanics,”Phys. Rev. D 8, 2503 (1973).

    Google Scholar 

  8. R. Fanelli, “Canonical transformations and phase space path integrals,”J. Math. Phys. 17, 490 (1976).

    Google Scholar 

  9. L. S. Schulman,Techniques and Applications of Path Integration (Wiley, New York, 1981), Secs. 27 and 31.

    Google Scholar 

  10. P. A. M. Dirac,The Principles of Quantum Mechanics, 4th edn. (Oxford University Press, Oxford, 1958), Sec. 32; also published inQuantum Electrodynamics, J. Schwinger, ed. (Dover, New York, 1958).

    Google Scholar 

  11. A. O. Barut and I. H. Duru, “Path integration via Hamilton-Jacobi coordinates and applications to potential barriers,”Phys. Rev. A 38, 5906 (1988).

    Google Scholar 

  12. R. P. Feynman, “Mathematical formulation of the quantum theory of electromagnetic interaction,”Phys. Rev. 80, 440 (1950), Appendix A.

    Google Scholar 

  13. See Ref. 1, Appendix D.

    Google Scholar 

  14. G. Riazanov,Zh. Eksp. Teor. Fiz. 33, 1308 (1958); also published inSov. Phys. JETP 6, 1107 (1958).

    Google Scholar 

  15. R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965), pp. 34–36.

    Google Scholar 

  16. L. S. Schulman, “Relativistic spin: Tops and wave equations,”Nucl. Phys. B 18, 595 (1970).

    Google Scholar 

  17. G. Rosen, “Feynman path summation for the Dirac equation: An underlying one-dimensional aspects of relativistic particle motion,”Phys. Rev. A 28, 1139 (1983).

    Google Scholar 

  18. T. Ichinose and H. Tamura, “Propagation of a Dirac particle. A path integral approach,”J. Math. Phys. 25, 1810 (1984).

    Google Scholar 

  19. T. Jacobson and L. S. Schulman, “Quantum stochastics: The passage from a relativistic to a nonrelativistic path integral,”J. Phys. A 17, 375 (1984).

    Google Scholar 

  20. T. Jacobson, “Spinor chain path integral for the Dirac equation,”J. Phys. A 17, 2433 (1984).

    Google Scholar 

  21. A. O. Barut and I. H. Duru, “Path integral derivation of the Dirac propagator,”Phys. Rev. Lett. 53, 2355 (1984).

    Google Scholar 

  22. A. O. Barut and I. H. Duru, “Path integral formulation of quantum electrodynamics from classical particle trajectories,”Phys. Rep. 172, 1 (1989).

    Google Scholar 

  23. A. O. Barut and N. Zanghi, “Classical Model of the Dirac Electron,”Phys. Rev. Lett. 52, 2009 (1984).

    Google Scholar 

  24. J. D. Bjorken and S. D. Drell,Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964), Secs. 1.2 and 9.2; Secs. 1.3, 3.2, and 6.4.

    Google Scholar 

  25. H. Goldstein,Classical Mechanics, 2nd edn. (Addison-Wesley, Reading, Massachusetts, 1980), Sec. 9.1; Sec. 10.1.

    Google Scholar 

  26. J. R. Klauder, “Continuous representations and path integrals revisited,” inNato Advanced Study Institute Series, Vol. 34: Path Integrals, G. J. Papadopoulos and J. T. Devreese, eds. (Plenum, New York, 1978), pp. 5–38.

    Google Scholar 

  27. K. Gottfried,Quantum Mechanics, Vol. I: Fundamentals (Benjamin, New York, 1966), Sec. 28.2.

    Google Scholar 

  28. A. Messiah,Mécanique Quantique (Dunod, Paris, 1959), Sec. VIII-6.

    Google Scholar 

  29. M. C. Gutzwiller, “Huygens' principle and the path integral,” inPath Summation: Achievements and Goals, S. Lundquist, A. Ranfagni, V. Sa-yakanil, and L. S. Schulman, eds. (World Scientific, Singapore, 1988), pp. 47–73.

    Google Scholar 

  30. G. J. Papadopoulos and J. T. Devreese, “Path-integral solutions of the Dirac equation,”Phys. Rev. D 13, 2227 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gür, H. Phase-space path integration of the relativistic particle equations. Found Phys 21, 1305–1314 (1991). https://doi.org/10.1007/BF00732832

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00732832

Keywords

Navigation