Advertisement

Foundations of Physics

, Volume 21, Issue 11, pp 1285–1295 | Cite as

Connections and geodesics in the spacetime tangent bundle

  • Howard E. Brandt
Article

Abstract

Recent interest in maximal proper acceleration as a possible principle generalizing the theory of relativity can draw on the differential geometry of tangent bundles, pioneered by K. Yano, E. T. Davies, and S. Ishihara. The differential equations of geodesics of the spacetime tangent bundle are reduced and investigated in the special case of a Riemannian spacetime base manifold. Simple relations are described between the natural lift of ordinary spacetime geodesics and geodesics in the spacetime tangent bundle.

Keywords

Differential Equation Manifold Differential Geometry Tangent Bundle Simple Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Yano and S. Ishihara,Tangent and Cotangent Bundles (Marcel Dekker, New York, 1973).Google Scholar
  2. 2.
    H. E. Brandt, “Structure of spacetime tangent bundle,” to be published inProceedings, Sixth Marcel Grossmann Meeting on General Relativity (Kyoto, Japan, 23–29 June 1991), H. Sato and T. Nakamura, eds. (World Scientific, Singapore).Google Scholar
  3. 3.
    H. E. Brandt, “Structure of spacetime tangent bundle,” Harry Diamond Laboratories Preprint HDL-PP-NWR-91-1 (1991), to appear inFound. Phys. Lett. 4 (1991).Google Scholar
  4. 4.
    H. E. Brandt, “Differential geometry of spacetime tangent bundle,” to be published inProceedings, Second International Wigner Symposium (Goslar, Germany, 16–20 July 1991), H. D. Doebner and F. Schroeck, Jr., eds. (World Scientific, Singapore).Google Scholar
  5. 5.
    H. E. Brandt, “Maximal proper acceleration relative to the vacuum,”Lett. Nuovo Cimento 38, 522 (1983);39, 192 (1984).Google Scholar
  6. 6.
    H. E. Brandt, “Hagedorn temperature of strings and structure of spacetime tangent bundle,”Bull. Am. Phys. Soc. 35, 950 (1990).Google Scholar
  7. 7.
    H. E. Brandt, “Maximal proper acceleration relative to the string vacuum,”Bull. Am. Phys. Soc. 35, 2368 (1990).Google Scholar
  8. 8.
    H. E. Brandt, “The maximal acceleration group,” inProceedings, XIII International Colloquium on Group Theoretical Methods in Physics, W. W. Zachary, ed. (World Scientific, Singapore, 1984), p. 519.Google Scholar
  9. 9.
    H. E. Brandt, “Differential geometry and gauge structure of maximal-acceleration invariant phase space,” inProceedings, XVth International Colloquium on Group Theoretical Methods in Physics, R. Gilmore, ed. (World Scientific, Singapore, 1987), p. 569.Google Scholar
  10. 10.
    H. E. Brandt, “Maximal-acceleration invariant phase space,” inThe Physics of Phase Space, Y. S. Kim and W. W. Zachary, eds. (Springer, Berlin, 1987), p. 414.Google Scholar
  11. 11.
    H. E. Brandt, “Kinetic theory in maximal-acceleration invariant phase space,” inProceedings, International Symposium on Spacetime Symmetries, Y. S. Kim and W. W. Zachary, eds.,Nucl. Phys. B, Proc. Suppl. 6, 367 (1989).Google Scholar
  12. 12.
    H. E. Brandt, “Maximal proper acceleration and the structure of spacetime,”Found. Phys. Lett. 2, 39, 405 (1989).Google Scholar
  13. 13.
    H. E. Brandt, “Maximal proper acceleration and the structure of spacetime,” inProceedings, Fifth Marcel Grossmann Meeting on General Relativity, D. G. Blair, M. J. Buckingham, and R. Ruffini, eds. (World Scientific, Singapore, 1989), p. 777.Google Scholar
  14. 14.
    E. R. Caianiello, “Is there a maximal acceleration?,”Lett. Nuovo Cimento 32, 65 (1981).Google Scholar
  15. 15.
    E. R. Caianiello, S. De Filippo, G. Marmo, and G. Vilasi, “Remarks on the maximal-acceleration hypothesis,”Lett. Nuovo Cimento 34, 112 (1982).Google Scholar
  16. 16.
    G. Scarpetta, “Relativistic kinematics with Caianiello's maximal proper acceleration,”Lett. Nuovo Cimento 41, 51 (1984).Google Scholar
  17. 17.
    E. R. Caianiello, G. Marmo, G. Scarpetta, “(Pre)Quantum geometry,”Nuovo Cimento A 86, 337 (1985).Google Scholar
  18. 18.
    H. E. Brandt, “Connection on spacetime tangent bundle,”Bull. Am. Phys. Soc. 35, 970 (1990).Google Scholar
  19. 19.
    K. Yano and E. T. Davies, “On the tangent bundles of Finsler and Riemannian manifolds,”Rend. Circ. Mat. Palermo 12, 211 (1963).Google Scholar
  20. 20.
    H. E. Brandt, “Geodesics in the spacetime tangent bundle,”Bull. Am. Phys. Soc. 36, 1318 (1991).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Howard E. Brandt
    • 1
  1. 1.Harry Diamond LaboratoriesAdelphi

Personalised recommendations