Advertisement

Foundations of Physics

, Volume 18, Issue 4, pp 449–460 | Cite as

Empirical two-point correlation functions

  • Lawrence J. Landau
Article

Abstract

Let A 1 , A 2 , A 3 A 4 be four observables, the compatible observables among them being (A 1 , A 3 ), (A 1 , A 4 ), (A 2 , A 3 ), (A 2 , A 4 ). In order that the empirical data be reproducible by a quantum or a classical theory, the two-point correlation functions
$$\{ C_{ij} = \left\langle {A_i A_j } \right\rangle :i,j a compatible pair\} $$
must necessarily satisfy
$$|X_{13} X_{14} - X_{23} X_{24} | \leqslant \left( {1 - X_{13} ^2 } \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \left( {1 - X_{14} ^2 } \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} + \left( {1 - X_{23} ^2 } \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \left( {1 - X_{24} ^2 } \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} (*)$$
where Xij=CijC ii 1/2 C jj 1/2 . In the case ofGaussian data, this inequality is alsosufficient; If (*) holds, there is a Gaussian joint distribution for A 1 , A 2 , A 3 , A 4 which reproduces the Gaussian data for compatible pairs. It follows that Bell's inequality is satisfied by all true-false propositions about the Gaussian data. A further consequence of the analysis is thatquantum Gaussian fields satisfy Bell's inequality for all true-false propositions aboutfield measurements.

The maximum violation of (*) corresponds to Rastall's example in the case of two-valued observables.

Keywords

Correlation Function Empirical Data Classical Theory Joint Distribution Gaussian Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. S. Cirel'son,Lett. Math. Phys. 4, 93 (1980).Google Scholar
  2. 2.
    L. Landau,Lett. Math. Phys. 14, 33 (1987);Phys. Lett. A 120, 54 (1987).Google Scholar
  3. 3.
    S. J. Summers and R. Werner,Phys. Lett. A 110, 257 (1985).Google Scholar
  4. 4.
    J. S. Bell,Physics 1, 195 (1964); A. Fine,Phys. Rev. Lett. 48, 291 (1982).Google Scholar
  5. 5.
    P. Rastall,Found. Phys. 15, 963 (1985).Google Scholar
  6. 6.
    L. Landau, “Gaussian quantum fields and stochastic electrodynamics,” to be published inPhys. Rev. Google Scholar
  7. 7.
    A. S. Wightman,Ann. Inst. Henri Poincaré A 1, 403 (1964).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Lawrence J. Landau
    • 1
  1. 1.Department of Mathematics, King's CollegeUniversity of LondonLondonEngland

Personalised recommendations