Foundations of Physics

, Volume 18, Issue 4, pp 401–426 | Cite as

Stochastic processes for indirectly interacting particles and stochastic quantum mechanics

  • V. Buonomano
  • A. F. Prado de Andrade


This work has two objectives. The first is to begin a mathematical formalism appropriate to treating particles which only interact with each otherindirectly due to hypothesized memory effects in a stochastic medium. More specifically we treat a situation in which a sequence of particles consecutively passes through a region (e.g., a measuring apparatus) in such a way that one particle leaves the region before the next one enters. We want to study a situation in which a particle may interact with other particles that previously passed through the system via disturbances made in the region by these previous particles.

Second, we apply the type of stochastic process appearing in this context to the stochastic interpretation of quantum mechanics to obtain a modified version of this interpretation. This version is free of many of the criticisms made against the stochastic interpretation of quantum mechanics.


Stochastic Process Quantum Mechanic Mathematical Formalism Memory Effect Measuring Apparatus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. F. Prado de Andrade, “Particulas que Interagim Indiretamente e a Interpretação Estocástica de Mecânica Quântica,” PhD Thesis, Instituto de Matemática, Universidade Estadual de Campinas, Campinas, S.P., Brazil.Google Scholar
  2. 2.
    L. F. Clauser and A. Shimony, “Bell's theorem: Experimental tests and implications,”Rep. Prog. Phys. 41, 1881 (1978).Google Scholar
  3. 3.
    F. Selleri and G. Tarozzi, “Quantum mechanics, reality and separability,”Riv. Nuovo Cimento 4, 1 (1981).Google Scholar
  4. 4.
    V. Buonomano, “A limitation on Bell's inequality,”Ann. Inst. Henri Poincaré 29, 379 (1978).Google Scholar
  5. 5.
    J. R. Kinney, “Continuity properties of sample functions of Markov processes,”Trans. Am. Math. Soc. 74, 280 (1953), Theorem VII.Google Scholar
  6. 6.
    L. M. Graves,The Theory of Functions of Real Variables, (McGraw-Hill, New York, 1965), Chap. VII.Google Scholar
  7. 7.
    G. C. Ghirardi, C. Omero, A. Rimini, and T. Weber, “The stochastic interpretation of quantum mechanics: A critical review,”Riv. Nuovo Cimento 1 1 (1978).Google Scholar
  8. 8.
    E. Nelson,Bull. Am. Math. Soc. 84, 121 (1978).Google Scholar
  9. 9.
    E. Nelson,Dynamical Theories of Brownian motion (Princeton University Press, Princeton, 1967).Google Scholar
  10. 10.
    H. Grabert, P. Hanggi, and P. Talkner, “Is quantum mechanics equivalent to a classical process?”,Phys. Rev. A 19, 2440 (1979).Google Scholar
  11. 11.
    M. Davidson, “A generalization of the Fényes-Nelson Stochastic model of quantum mechanics,”Lett. Math. Phys. 3, 271 (1979).Google Scholar
  12. 12.
    V. Buonomano, “Quantum mechanics as a non-ergodic classical statistical theory,”Nuovo Cimento B 57, 146 (1980).Google Scholar
  13. 13.
    V. Buonomano, “The non-ergodic interpretation of quantum mechanics,” inMicrophysical Reality and Quantum Formalism, A. van der Merwe, F. Selleri, and G. Tarozzi, eds. (Kluwer Academic, Dordrecht, 1988).Google Scholar
  14. 14.
    L. Ballentine,Rev. Mod. Phys. 42, 358 (1979).Google Scholar
  15. 15.
    R. J. Glauber, “Optical coherence and photon statistics,” inQuantum Optics and Electronics, C. de Witt, A. Blandin, and C. Cohen-Tannoudji, eds. (Gordon and Breach, New York, 1965), p. 63.Google Scholar
  16. 16.
    L. Mandel and E. Wolf, “Coherence properties of optical fields,”Rev. Mod. Phys. 37, 231 (1965).Google Scholar
  17. 17.
    H. Margenau, “Measurements and quantum states: Part I,”Philos. Soc. 30, 1 (1963).Google Scholar
  18. 18.
    V. Buonomano, “The number of counting measurements, the visibility and the intensity,”Lett. Nuovo Cimento 43, 69 (1985); Also “Testing the ergodic assumption in the low-intensity interference experiments,” with F. Bartmann,Il Nuovo Cimento 95B, 99 (1986).Google Scholar
  19. 19.
    J. G. Gilson, “On stochastic theories of quantum mechanics,”Proc. Camb. Philos. Soc. 64, 1061 (1968).Google Scholar
  20. 20.
    E. Onofre, “The stochastic interpretation of quantum mechanics: A reply to Ghirardi,”Lett. Nuovo Cimento 24, 253 (1979)_.Google Scholar
  21. 21.
    E. Onofre, “Schrödinger's equation,” inGroup Theoretical Methods in Physics, A. Jammer, T. Janssen, and M. Boon, eds. (Springer, Berlin, 1976), p. 582.Google Scholar
  22. 22.
    A. F. Kracklauer, “Comment on derivation of the Schrödinger equation from Newtonian mechanics,”Phys. Rev. D 10, 1358 (1974).Google Scholar
  23. 23.
    B. H. Lavenda, “On the equivalence between classical Markov processes and quantum mechanics,”Lett. Nuovo Cimento 27, 433 (1980).Google Scholar
  24. 24.
    S. Albeverio and R. Hoegh-Krohn, “A remark on the connection between stochastic mechanics and the heat equation,”J. Math. Phys. 15, 1745 (1974).Google Scholar
  25. 25.
    B. Mielnik and G. Tengstrand, “Nelson-Brown motion: Some question marks,”Int. J. Theory. Phys. 19, 239 (1980).Google Scholar
  26. 26.
    E. Nelson, “Derivation of the Schrödinger equation from Newtonian mechanics,”Phys. Rev. 150, 1079 (1966).Google Scholar
  27. 27.
    S. M. Moore, “Can stochastic physics be a complete theory of nature?”,Found. Phys. 9, 237 (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • V. Buonomano
    • 1
  • A. F. Prado de Andrade
    • 2
  1. 1.Instituto de MatemáticaUniversidade Estadual de CampinasCampinas, São PauloBrazil
  2. 2.Departmento de MatemáticaUniversidade Estadual de ParanáLondrina, ParanáBrazil

Personalised recommendations