Advertisement

Foundations of Physics

, Volume 19, Issue 10, pp 1215–1263 | Cite as

Coordinates and covariance: Einstein's view of space-time and the modern view

  • John Norton
Article

Abstract

Where modern formulations of relatively theory use differentiable manifolds to space-time, Einstein simply used open sets of R 4 , following the then current methods of differential geometry. This fact aids resolution of a number of outstanding puzzles concerning Einstein's use of coordinate systems and covariance principles, including the claimed physical significance of covariance principles, their connection to relativity principles, Einstein's apparent confusion of coordinate systems and frames of reference, and his failure to distinguish active and passive transformations, especially in the context of his hole and point-coincidence arguments

Keywords

Manifold Covariance Coordinate System Differential Geometry Current Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. L. Anderson,Principles of Relativity Physics (Academic Press, New York, 1967).Google Scholar
  2. 2.
    R. L. Bishop and S. I. Goldberg,Tensor Analysis on Manifiolds (Dover, New York, 1980).Google Scholar
  3. 3.
    J. Earman, “Covariance, Invariance and the Equivalence of Frames,”Found. Phys. 4, 267–289 (1974).Google Scholar
  4. 4.
    J. Earman and J. Norton, “What Price Space-time Substantivalism? The Hole Argument,”Br. J. Philos. Sci., forthcoming.Google Scholar
  5. 5.
    A. Einstein, Zum gegenwärtigen Stande des Gravitationsproblems,”Phys. Z. 14, 1249–1266 (1913).Google Scholar
  6. 6.
    A. Einstein, “Die formale Grundlage der allgemeinen Relativitätstheorie,”Preuss. Akad. Wiss. Sitz., pp. 1030–1085 (1914).Google Scholar
  7. 7.
    A. Einstein, “Zum Relativitäts-problem”,Scientia 15, 337–348 (1914).Google Scholar
  8. 8.
    A. Einstein, “Prinzipielles zur verallgemeinerten Relativitätstheorie,”Phys. Z. 15, 176–180 (1914).Google Scholar
  9. 9.
    A. Einstein, “Die Gurndlage der allgemeinen Relativitätstheorie,”Ann. Phys. (Leipzig)49, 769–822 (1916); translated without p. 769 as “The Foundation of the General Theory of Relativity,” pp. 111–164 inThe Principle of Relativity (Dover, New York, 1952).Google Scholar
  10. 10.
    A. Einstein, “Uber Friedrich Kottlers Abhandlung ‘Über Einsteins Äquivalenzhypothese und die Gravitation,”Ann. Phys. (Leipzig)51, 639–642 (1916).Google Scholar
  11. 11.
    A. Einstein,Relativity: the Special and the General Theory (1917; Methuen, London, 1977).Google Scholar
  12. 12.
    A. Einstein, “Prinzipielles zur allgemeinen Relativitätstheorie,”Phys. (Leipzig)55, 240–244 (1918).Google Scholar
  13. 13.
    A. Einstein,The Meaning of Relativity (1922; Chapman and Hall, London, 1976).Google Scholar
  14. 14.
    A. Einstein, “Über den Äther,”Schweiz Nat. Gesell. Ver. 105, 85–93 (1924).Google Scholar
  15. 15.
    A. Einstein, “The Mechanics of Newton and their Influence on the Development of Theoretical Physics” (1927), pp. 253–261 in Einstein.(19) Google Scholar
  16. 16.
    A. Einstein, “The Problem of Space, Ether, and the Field in Physics” (1929), pp. 276–285 in Einstein.(19) Google Scholar
  17. 17.
    A. Einstein, “Autobiographical Notes,” inAlbert Einstein: Philosopher-Scientist, P. A. Schilpp, ed. (1949; Open Court, La Salle, 1979).Google Scholar
  18. 18.
    A. Einstein, Foreword (1953) to M. Jammer,Concepts of Space (Harvard University Press, Cambridge, 1969).Google Scholar
  19. 19.
    A. Einstein,Ideas and Opinions (Crown, New York, 1954).Google Scholar
  20. 20.
    A. Einstein and M. Grossmann,Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation (Teubner, Leibzig, 1913) (separatum); with addendum by Einstein inZ. Math. Phys. 63, 225–261 (1913).Google Scholar
  21. 21.
    A. Einstein and M. Grossmann, “Kovarianzeigenschaften der Feldgleichungen der auf die verallgemeinerte Relativitätstheorie gegründeten Gravitationstheorie,”Z. Math. Phys. 63, 215–225 (1914).Google Scholar
  22. 22.
    V. Fock,The Theory of Space-Time and Gravitation (Pergamon, London, 1959).Google Scholar
  23. 23.
    H. Freudenthal, “David Hilbert,” pp. 388–395, inDictionary of Scientific Biography (Scribner's, New York, 1972).Google Scholar
  24. 24.
    M. Friedman,Foundations of Space-Time Theories (Princeton University Press, Princeton, 1983).Google Scholar
  25. 25.
    S. Hawking and G. F. R. Ellis,The Large-Scale Structure of Space-time (Cambridge University Press, Cambridge, 1973).Google Scholar
  26. 26.
    D. Hilbert, “Die Grundlagen der Physik,”Akad. Wiss. Gött. Nachr. 1915, pp. 395–407; 1917, pp. 53–76.Google Scholar
  27. 27.
    A. Hiskes, “Space-time Theories and Symmetry Groups,”Found. Phys. 14, 307–332 (1984).Google Scholar
  28. 28.
    G. Holton, “Introduction: Einstein and the Shaping of Our Imagination,” inAlbert Einstein: Historical and Cultural Perspectives, G. Holton and Y. Elkana, eds. (Princeton University Press, Princeton, 1982), pp. vii-xxxii.Google Scholar
  29. 29.
    F. Klein, “Über die sogenannte nich-Euklidische Geometria” (1873, 2te. Aufsatz), inGesammelte Mathematische Abhandlungen, Vol. 1 (Springer, Berlin, 1921–1923), pp. 311–343.Google Scholar
  30. 30.
    F. Klein, “Über die geometrischen Grundlagen der Lorentz-gruppe” (1910), inGesammelte Mathematische Abhandlangen, Vol. 1 (Springer, Berlin), pp. 533–552.Google Scholar
  31. 31.
    F. Klein,Einleitung in die höhere Geometrie, I. Vorlesung, gehalten im Wintersemester 1892–1893, transcribed by Fr. Schilling (Göttingen, 1893).Google Scholar
  32. 32.
    F. Klein,Vorlesungen über nicht-Euklidische Geometrie (Chelsea, New York, 1927).Google Scholar
  33. 33.
    E. Kretschmann, “Über den physikalischen Sinn der Relativitätspostulat, A Einsteins neue und seine ursprüglische Relativitätstheorie,”Ann. Phys. (Leipzig)53, 575–614 (1917).Google Scholar
  34. 34.
    T. Levi-Civita,The Absolute Differential Calculus (1926; Dover, New York, 1977).Google Scholar
  35. 35.
    J. H. Manheim,The Genesis of Point Set Topology (Pergamon, New York, 1964).Google Scholar
  36. 36.
    R. McCormmach, “Editor's Foreword,”Hist. Stud. Philos. Sci. 7, xi-xxxv (1976).Google Scholar
  37. 37.
    H. Minkowski, “Raum und Zeit,” inDas Relativitätsprinzip, H. A. Lorentzet al., eds. (Teubner, Leipzig, 1908), pp. 56–68.Google Scholar
  38. 38.
    H. Minkowski, “Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern,”Gött. Königl. Ges. Wiss. Nachr., pp. 53–111 (1908).Google Scholar
  39. 39.
    H. Minkowski, “Space and Time” (1908), inThe Principle of Relativity, A. Einsteinet al., eds. (Dover, New York, 1952).Google Scholar
  40. 40.
    J. Norton, “What was Einstein's Principle of Equivalence?”,Stud. Hist. Philos. Sci. 16, 203–246 (1985).Google Scholar
  41. 41.
    J. Norton, “Einstein, the Hole Argument and the Reality of Space,” inMeasurement, Realism and Objectivity, J. Forge, ed. (Reidel, Dordrecht, 1987).Google Scholar
  42. 42.
    A. Pais,Subtle is the Lord...: The Science and the Life of Albert Einstein (Clarendon, Oxford, 1982).Google Scholar
  43. 43.
    R. K. Sachs and H. Wu,General Relativity for Mathematicians (Springer, New York, 1977).Google Scholar
  44. 44.
    A. Sommerfeld, “Zur Relativitätstheorie. Vierdimensionale Vektoralgebra,”Ann. Phys. (Leipzig)32, 749–776;33, 649–689 (1910).Google Scholar
  45. 45.
    P. Speziali, ed.,Albert Einstein-Michele Besso: Correspondence 1903–1955 (Paris, 1972).Google Scholar
  46. 46.
    J. Stachel, “Einstein's Search for General Covariance,” inProceedings of the Ninth International Conference on General Relativity and Gravitation (Jena, 1980), E. Schmutzer, ed. (Cambridge University Press, Cambridge, 1983).Google Scholar
  47. 47.
    J. Stachel, “What can a Physicist Learn from the Discovery of General Relativity?”Proceedings, 4th Marcel Grossmann Meeting on Recent Developments in General Relativity, Rome, Italy, 17–21 June, 1985.Google Scholar
  48. 48.
    G. Ricci and T. Levi-Civita, “Méthodes de Calcul Différentiel Absolu et leurs Application” (1900), inOpere Matematiche, T. Levi-Civita, ed., Vol. 1 (Bologna, 1954).Google Scholar
  49. 49.
    B. Riemann, “On the Hypotheses Which Lie at the Foundations of Geometry,” (1854), inA Source Book in Mathematics, D. E. Smith, ed. (Dover, New York, 1959).Google Scholar
  50. 50.
    R. Torretti,Philosophy of Geometry from Riemann to Poincaré (Reidel, Dordrecht, 1978).Google Scholar
  51. 51.
    R. Torretti,Relativity and Geometry (Pergamon, New York, 1983).Google Scholar
  52. 52.
    R. Torretti, “Space-Time Physics and the Philosophy of Science,”Br. J. Philos. Sci. 35, 280–292 (1984).Google Scholar
  53. 53.
    R. Wald,General Relativity (University of Chicago Press, Chicago, 1984).Google Scholar
  54. 54.
    J. Norton, “The Physical Content of General Covariance,” in preparation.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • John Norton
    • 1
  1. 1.Department of History and Philosophy of ScienceUniversity of PittsburghPittsburgh

Personalised recommendations