Advertisement

Foundations of Physics

, Volume 19, Issue 10, pp 1125–1149 | Cite as

Off-shell electromagnetism in manifestly covariant relativistic quantum mechanics

  • David Saad
  • L. P. Horwitz
  • R. I. Arshansky
Article

Abstract

Gauge invariance of a manifestly covariant relativistic quantum theory with evolution according to an invariant time τ implies the existence of five gauge compensation fields, which we shall call pre-Maxwell fields. A Lagrangian which generates the equations of motion for the matter field (coinciding with the Schrödinger type quantum evolution equation) as well as equations, on a five-dimensional manifold, for the gauge fields, is written. It is shown that τ integration of the equations for the pre-Maxwell fields results in the usual Maxwell equations with conserved current source. The analog of the O (3, 1) symmetry of the usual Maxwell theory is found to be O (3, 2) or O (4, 1), depending on the space-time Fourier spectrum of the field. We argue that the structure that is relevant to the description of radiation in interaction with matter evolving in a timelike sense is that of O (3, 2). The noncovariant form of the field equations is given; there are two fields of electric type and one (divergenceless) magnetic type field. The Noether currents are studied, and some remarks are made on second quantization.

Keywords

Manifold Gauge Invariance Fourier Spectrum Gauge Field Matter Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    E. C. G. Stueckelberg,Helv. Phys. Acta. 14, 372, 588 (1941);15, 23 (1942).Google Scholar
  2. 2.
    R. P. Feynman,Phys. Rev. 80, 440 (1950).Google Scholar
  3. 3.
    L. P. Horwitz and C. Piron,Helv. Phys. Acta. 46, 316 (1973); D. Dewdney, P. R. Holland, A. Kypianidis, and J. P. Vigier,Phys. Lett. 113A, 359 (1986),114A, 440 (1986); A. Kypianidis,Phys. Rep. 155, 1(1987); J. R. Fanchi,Phys. Rev. D20, 3108 (1979).Google Scholar
  4. 4.
    R. Arshansky and L. P. Horwitz,Found. Phys. 15, 701 (1985).Google Scholar
  5. 5.
    R. Arshansky, L. P. Horwitz, and Y. Lavie,Found. Phys. 13, 1167 (1983).Google Scholar
  6. 6.
    L. P. Horwitz, C. Piron, and F. Reuse,Helv. Phys. Acta 48, 546 (1975); C. Piron and F. Reuse,Helv. Phys. Acta 51, 146 (1978); H. H. Grelland,Int. J. Quantum Chem. XIX, 873 (1981); L. C. Hostler,J. Math. Phys. 26, 2666 (1985); L. P. Horwitz and R. Arshansky,J. Phys. A: Math. Gen. 15, L659 (1982).Google Scholar
  7. 7.
    L. P. Horwitz, W. C. Schieve, and C. Piron,Ann. Phys. 137, 306 (1981); L. P. Horwitz, S. Shashoua, and W. C. Schieve, to be published inPhysica A.Google Scholar
  8. 8.
    R. I. Arshansky and L. P. Horwitz,Phys. Lett. 128, 123 (1988);J. Math. Phys. 30, 66 and 380 (1989).Google Scholar
  9. 9.
    R. I. Arshansky and L. P. Horwitz,Phys. Lett. 131, 222 (1988);J. Math. Phys. 30, 213 (1989).Google Scholar
  10. 10.
    L. P. Horwitz,Found. Phys. 14, 1027 (1984).Google Scholar
  11. 11.
    R. Kubo,Nouvo Cimento 85A, 4 (1985).Google Scholar
  12. 12.
    L. Hostler,Math. Phys. 22, 2307 (1981).Google Scholar
  13. 13.
    A. I. Akhiezer and V. B. Berestetsky,Quantum Electrodynamics (U.S. Atomic Energy Commission, Consultants Bureau translation AEC-tr-2876).Google Scholar
  14. 14.
    L. Hostler,J. Math. Phys. 21, 2461 (1980); J. R. Fanchi,Phys. Rev. D 20, 3108 (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • David Saad
    • 1
  • L. P. Horwitz
    • 2
  • R. I. Arshansky
    • 2
  1. 1.Department of Electromagnetic Devices and Radiation, Faculty of EngineeringTel Aviv UniversityRamat AvivIsrael
  2. 2.School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityRamat AvivIsrael

Personalised recommendations