Skip to main content
Log in

Four-space formulation of Dirac's equation

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Dirac's equation is reviewed and found to be based on nonrelativistic ideas of probability. A 4-space formulation is proposed that is completely Lorentzinvariant, using probability distributions in space-time with the particle's proper time as a parameter for the evolution of the wave function. This leads to a new wave equation which implies that the proper mass of a particle is an observable, and is sharp only in stationary states. The model has a built-in arrow of time, which is associated with a restriction to positive-energy solutions. The usual solution for a Coulomb field is retained, though it now implies a slightly different charge distribution. The conventional nonstationary solutions become invalid. The new formulation appears to offer a resolution of difficulties that have been associated with Dirac's equation. It also predicts the occurrence of virtual pairs at a level that may be experimentally testable, and suggests a mechanism for self-cancellation of the vacuum energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. P. Horwitz,Old and New Questions in Physics, Cosmology, Philosophy, and Theoretical Biology, A. van der Merwe, ed. (Plenum, New York, 1983), p. 169.

    Google Scholar 

  2. J. R. Ellis,J. Phys. A 14, 2917 (1981).

    Google Scholar 

  3. A. Kyprianidis,Phys. Rep. 155, 1 (1987).

    Google Scholar 

  4. D. F. Lawden,The Mathematical Principles of Quantum Mechanics (Methuen, London, 1967).

    Google Scholar 

  5. L. I. Schiff,Quantum Mechanics, 3rd edn. (McGraw-Hill, New York, 1968).

    Google Scholar 

  6. J. D. Bjorken and S. D. Drell,Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964).

    Google Scholar 

  7. C. Itzykson and J.-B. Zuber,Quantum Field Theory (McGraw-Hill, New York, 1980).

    Google Scholar 

  8. P. A. M. Dirac,The Principles of Quantum Mechanics, 4th edn. (Oxford University Press, Oxford, 1958).

    Google Scholar 

  9. M. Sachs,Hadronic J. 5, 1781 (1982).

    Google Scholar 

  10. J. R. Fanchi,Phys. Rev. A 34, 1677 (1986).

    Google Scholar 

  11. E. Recami,The Uncertainty Principle and Foundations of Quantum Mechanics, W. C. Price and S. S. Chissick, eds. (Wiley, London, 1977), p. 21.

    Google Scholar 

  12. R. E. Collins and J. R. Fanchi,Nuovo Cimento A 48, 314 (1978); J. R. Fanchi and R. E. Collins,Found. Phys. 8, 851 (1978).

    Google Scholar 

  13. L. P. Horwitz and C. Piron,Helv. Phys. Acta 46, 316 (1973); L. P. Horwitz, C. Piron, and F. Reuse,Helv. Phys. Acta 48, 546 (1975); C. Piron and F. Reuse,Helv. Phys. Acta 51, 146 (1978); L. P. Horwitz and R. Arshansky,J. Phys. A 15, L659 (1982).

    Google Scholar 

  14. F. Rohrlich,Ann. Phys. (N. Y.) 117, 292 (1979); M. J. King and F. Rohrlich,Ann. Phys. (N. Y.) 130, 350 (1980).

    Google Scholar 

  15. D. H. Kobe,Int. J. Theor. Phys. 21, 685 (1982).

    Google Scholar 

  16. N. C. Petroni and J.-P. Vigier,Found. Phys. 13, 253 (1983).

    Google Scholar 

  17. J. M. B. Uffink and J. Hilgevoord,Found. Phys. 15, 925 (1985).

    Google Scholar 

  18. L. P. Horwitz and F. C. Rotbart,Phys. Rev. D 24, 2127 (1981).

    Google Scholar 

  19. L. P. Horwitz and Y. Lavie,Phys. Rev. D 26, 819 (1982).

    Google Scholar 

  20. E. Recami,Found. Phys. 17, 239 (1987).

    Google Scholar 

  21. J. R. Fanchi,Phys. Rev. A 35, 4859 (1987).

    Google Scholar 

  22. L. Abbott,Sci. Am. 258, 82 (1988).

    Google Scholar 

  23. H. Wergeland,Old and New-Questions in Physics, Cosmology, Philosophy, and Theoretical Biology, A. van der Merwe, ed. (Plenum, New York, 1983), p. 503.

    Google Scholar 

  24. J. R. Fanchi,Found. Phys. 11, 493 (1981).

    Google Scholar 

  25. L. P. Horwitz, W. C. Schieve, and C. Piron,Ann. Phys. (N. Y.) 137, 306 (1981).

    Google Scholar 

  26. J. R. Fanchi,Phys. Rev. A 37, 3956 (1988).

    Google Scholar 

  27. H. Feshbach and F. Villars,Rev. Mod. Phys. 30, 24 (1958).

    Google Scholar 

  28. Y. Nambu,Prog. Theor. Phys. 5, 82 (1950).

    Google Scholar 

  29. H. Enatsu,Nuovo Cimento A 58, 891 (1968).

    Google Scholar 

  30. L. Hostler,J. Math. Phys. 21, 2461 (1980).

    Google Scholar 

  31. R. Kubo,Nuovo Cimento A 85, 293 (1985).

    Google Scholar 

  32. Y. S. Kim and M. E. Noz,Found. Phys. 9, 375 (1979); P. E. Hussar, Y. S. Kim, and M. E. Noz,Am. J. Phys. 53, 142 (1985).

    Google Scholar 

  33. E. Prugovecki,Found. Phys. 12, 555 (1982).

    Google Scholar 

  34. A. B. Evans,Found. Phys. Lett. 2, 499 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, A.B. Four-space formulation of Dirac's equation. Found Phys 20, 309–335 (1990). https://doi.org/10.1007/BF00731695

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731695

Keywords

Navigation