Skip to main content
Log in

The transformation properties of world lines in relativistic quantum mechanical Hamiltonian models

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The supposition of the manifest covariance of average trajectory world lines is violated in Hamiltonian formulations of relativistic quantum mechanics. This is due to the nonlinear appearance of particle dynamical variable operators in the Heisenberg picture boosted position, velocity, and momentum operators. The magnitude of this deviation from world line manifest covariance is found to be exceedingly small for a number of common time of flight experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. D. Newton and E. P. Wigner,Rev. Mod. Phys. 21, 400 (1949).

    Google Scholar 

  2. A. J. Kálnay, inProblems in the Foundations of Physics, edited by M. Bunge (Springer-Verlag, New York, 1971) and references contained therein. More recent contributions to the literature include: M. Lorente and P. Roman,J. Math. Phys. 15, 70 (1974). C. Benard,J. Math. Phys. 16, 710 (1975). B. Durand,Phys. Rev. D14, 1554 (1976). J. F. Perez and I. F. Wilde,Phys. Rev. D16, 315 (1977). B. Jancewicz,J. Math. Phys. 18, 2487 (1977). T. F. Jordan,J. Math. Phys. 21, 2028 (1980).

    Google Scholar 

  3. L. L. Foldy,Phys. Rev. 102, 568 (1956).

    Google Scholar 

  4. M. H. L. Pryce,Proc. Roy. Soc. 195A, 62 (1948).

    Google Scholar 

  5. P. A. M. Dirac,Rev. Mod. Phys. 21, 392 (1949).

    Google Scholar 

  6. B. Bakamjian and L. H. Thomas,Phys. Rev. 92, 1300 (1953).

    Google Scholar 

  7. H. Feshbach and F. Villars,Rev. Mod. Phys. 30, 24 (1958).

    Google Scholar 

  8. S. Sakata and M. Taketani,Sci. Pap. Inst. Phys. Chem. Res. Tokyo 38, 1 (1940); and reprinted inProg. Theor. Phys. Suppl. 1, 84 (1955).

    Google Scholar 

  9. L. H. Thomas,Phys. Rev. 85, 868 (1952).

    Google Scholar 

  10. G. N. Fleming,Phys. Rev. 137, B188 (1965);139, B963 (1965).

    Google Scholar 

  11. H. Osborn,Phys. Rev. 176, 1514 (1968).

    Google Scholar 

  12. G. A. Fink,Phys. Rev. 50, 738 (1936).

    Google Scholar 

  13. P. N. Kirk, M. Breidenbach, J. I. Friedman, G. C. Hartmann, H. W. Kendall, G. Buschhorn, D. H. Coward, H. DeStaebler, R. A. Early, J. Litt, A. Minten, L. W. Mo, W. K. H. Panofsky, R. E. Taylor, B. C. Barish, S. C. Loken, J. Mar, and J. Pine,Phys. Rev. D8, 63 (1973).

    Google Scholar 

  14. L. L. Foldy,Phys. Rev. 122, 275 (1961).

    Google Scholar 

  15. Yu. M. Shirokov,Zh. Eksp. Teor. Fiz. 36, 474 (1959);Sov. Phys. JETP 9, 330 (1959).

    Google Scholar 

  16. E. H. Kerner, Ed.,The Theory of Action-at-a-Distance in Relativistic Particle Dynamics (Gordon and Breach, New York, 1972).

    Google Scholar 

  17. D. G. Curie, T. F. Jordan, and E. C. G. Sudarshan,Rev. Mod. Phys. 35, 350 (1963).

    Google Scholar 

  18. D. G. Currie,J. Math. Phys. 4, 1470 (1963).

    Google Scholar 

  19. H. Leutwyler,Nuovo Cimento 37, 556 (1965).

    Google Scholar 

  20. F. Coester and P. Havas,Phys. Rev. D14, 2556 (1976).

    Google Scholar 

  21. J. Martin and J. L. Sanz,J. Math. Phys. 19, 780 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lock, J.A. The transformation properties of world lines in relativistic quantum mechanical Hamiltonian models. Found Phys 12, 743–757 (1982). https://doi.org/10.1007/BF00731687

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731687

Keywords

Navigation