Advertisement

Foundations of Physics

, Volume 13, Issue 5, pp 545–552 | Cite as

A fundamental quadratic variational principle underlying general relativity

  • William K. Atkins
Article
  • 66 Downloads

Abstract

The fundamental result of Lanczos is used in a new type of quadratic variational principle whose field equations are the Einstein field equations together with the Yang-Mills type equations for the Riemann curvature. Additionally, a spin-2 theory of gravity for the special case of the Einstein vacuum is discussed.

Keywords

General Relativity Field Equation Variational Principle Type Equation Fundamental Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. N. Yang and R. L. Mills,Phys. Rev. 96, 191 (1954).Google Scholar
  2. 2.
    R. Utiyama,Phys. Rev. 101, 1597 (1956).Google Scholar
  3. 3.
    T. W. B. Kibble,J. Math. Phys. 2, 212 (1961).Google Scholar
  4. 4.
    D. W. Sciama, inRecent Developments in General Relativity (Pergamon, New York, and PWN-Polish Scientific, Warsaw, 1962).Google Scholar
  5. 5.
    Y. M. Cho,Phys. Rev. D,14, 2521, 3335, and 3341 (1976).Google Scholar
  6. 6.
    F. Mansouri and L. N. Chang,Phys. Rev. D,13, 3192 (1976).Google Scholar
  7. 7.
    K. Hayashi and T. Nakano,Progr. Theor. Phys. 38, 491 (1967).Google Scholar
  8. 8.
    C. N. Yang,Phys. Rev. Lett. 33, 445 (1974).Google Scholar
  9. 9.
    R. Burghardt,Acta. Phys. Austr. 38, 327 (1973); andActa. Phys. Austr. 39, 31 and 127 (1974).Google Scholar
  10. 10.
    M. Camezind,J. Math. Phys. 16, 1023 (1975); andGen. Rel. Grav. 8, 103 (1977).Google Scholar
  11. 11.
    E. A. Lord,Phys. Lett. 65A, 1 (1978).Google Scholar
  12. 12.
    J. P. Harnad and R. B. Pettitt,J. Math. Phys. 17, 1827 (1976).Google Scholar
  13. 13.
    P. von der Hyde,Phys. Lett. 58A, 141 (1976).Google Scholar
  14. 14.
    M. Carmeli and S. Malin,Ann. of Phys. 103, 208 (1977).Google Scholar
  15. 15.
    Y. M. Cho and P. S. Yang,Phys. Rev. D,12, 3789 (1975).Google Scholar
  16. 16.
    A. G. Agnese and P. Calvini,Phys. Rev. D,12, 3800 and 3804 (1975).Google Scholar
  17. 17.
    F. W. Hehl, P. von der Hyde, G. D. Kerlick, and J. M. Nester,Rev. of Mod. Phys. 48, 393 (1976).Google Scholar
  18. 18.
    D. Derbes,Il Nuovo Cimento 45B, 31 (1978).Google Scholar
  19. 19.
    A. Trautman,Rep. Math. Phys. 1, 29 (1979);Rep. Math. Phys. 10, 297 (1976).Google Scholar
  20. 20.
    A. Lichnerowicz,Gen. Rel. Grav. 1, 235 (1971).Google Scholar
  21. 21.
    W. Drechsler and M. E. Mayer,Fiber Bundle Techniques in Gauge Theory (Lecture Notes in Physics) (Springer-Verlag, Berlin, 1977).Google Scholar
  22. 22.
    E. Lubkin,Ann. of Phys. 23, 233 (1963).Google Scholar
  23. 23.
    C. Lanczos,Rev. Mod. Phys. 34, 379 (1962).Google Scholar
  24. 24.
    W. K. Atkins, Ph.D. Dissertation, unpublished.Google Scholar
  25. 25.
    W. K. Atkins and W. R. Davis,Il Nuovo Cimento,59B, 116 (1980).Google Scholar
  26. 26.
    J. A. Schouten,Ricci Calculus (Springer-Verlag, Berlin, 1954).Google Scholar
  27. 27.
    N. Rosen,Found. Phys. 10, 673 (1980).Google Scholar
  28. 28.
    J. Schwinger,Particles, Sources, and Fields, Vol. I (Addison-Wesley, Reading, Mass., 1970), pp. 189–190.Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • William K. Atkins
    • 1
  1. 1.Departments of Physics and Electrical EngineeringNorth Carolina State UniversityRaleigh

Personalised recommendations