Skip to main content
Log in

Extension of trigonometric and hyperbolic functions to vectorial arguments and its application to the representation of rotations and Lorentz transformations

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The use of the axial vector representing a three-dimensional rotation makes the rotation representation much more compact by extending the trigonometric functions to vectorial arguments. Similarly, the pure Lorentz transformations are compactly treated by generalizing a scalar rapidity to a vector quantity in spatial three-dimensional cases and extending hyperbolic functions to vectorial arguments. A calculation of the Wigner rotation simplified by using the extended functions illustrates the fact that the rapidity vector space obeys hyperbolic geometry. New representations bring a Lorentz-invariant fundamental equation of motion corresponding to the Galilei-invariant equation of Newtonian mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Palazzolo,Am. J. Phys. 44, 63 (1976).

    Google Scholar 

  2. J. Matthews,Am. J. Phys. 44, 1210 (1976).

    Google Scholar 

  3. Y. Aharonov, H. A. Farach, and C. P. Poole, Jr.,Am. J. Phys. 45, 451 (1977).

    Google Scholar 

  4. C. P. Poole, Jr., H. A. Farach, and Y. Aharonov,Found. Phys. 10, 531 (1980).

    Google Scholar 

  5. M. F. Beatty,Am. J. Phys. 45, 1006 (1977).

    Google Scholar 

  6. W. G. Harter and N. dos Santos,Am. J. Phys. 46, 251 (1978).

    Google Scholar 

  7. T. R. Koehler and S. B. Trickey,Am. J. Phys. 46, 650 (1978).

    Google Scholar 

  8. J. M. Wilkes,Am. J. Phys. 46, 685 (1978).

    Google Scholar 

  9. C. Leubner,Am. J. Phys. 47, 727 (1979);48, 563 (1980).

    Google Scholar 

  10. A. Peres,Am. J. Phys. 48, 70 (1980); P. Blewett,Am. J. Phys. 48, 174 (1980).

    Google Scholar 

  11. E. Byckling and K. Kajantie,Particle Kinematics (Wiley, New York, 1973).

    Google Scholar 

  12. K. Mori and H. Nakamura,Suppl. Prog. Theor. Phys. No. 54, 93 (1973).

  13. E. F. Taylor and J. A. Wheeler,Space-Time Physics (Freeman, San Francisco, 1966), p. 47.

    Google Scholar 

  14. J.-M. Lévy-Leblond and J.-P. Provost,Am. J. Phys. 47, 1045 (1979).

    Google Scholar 

  15. J.-M. Lévy-Leblond,Am. J. Phys. 48, 345 (1980).

    Google Scholar 

  16. H. Yamasaki,Am. J. Phys. 35, 1161 (1967).

    Google Scholar 

  17. H. Yamasaki,Prog. Theor. Phys. 42, 234 (1969).

    Google Scholar 

  18. H. Yamasaki,Prog. Theor. Phys. 44, 1567 (1970).

    Google Scholar 

  19. R. D. Sard,Relativistic Mechanics (Benjamin, New York, 1970), p. 264.

    Google Scholar 

  20. V. Varaićak,Jahresber. Dtsch. Math. Ver. 21, 103 (1912).

    Google Scholar 

  21. L. Silberstein,The Theory of Relativity (Macmillan, London, 1914), p. 163.

    Google Scholar 

  22. R. H. Boyer,Am. J. Phys. 33, 910 (1965).

    Google Scholar 

  23. Ya. A. Smorodinskii,Fortschr. Phys. 13, 157 (1965); J. Werle,Relativistic Theory of Reactions (North-Holland, Amsterdam, 1966), p. 342.

    Google Scholar 

  24. G. C. Wick,Visual Aids to Relativistic Kinematics, CERN 73-3(1973); A. Yaccarini,Can. J. Phys. 52, 40 (1974).

  25. N. A. Chernikov,Sov. J. Particles Nucl. 4, 315 (1974).

    Google Scholar 

  26. A. A. Bogush, Yu. A. Kurochkin, and F. I. Fedorov,Sov. Phys. Dokl. 22, 493 (1977).

    Google Scholar 

  27. J. W. Schutz,Foundations of Special Relativity: Kinematic Axioms for Minkowski Space-Time (Springer-Verlag, New York, 1973); J. Ax,Found. Phys. 8, 507 (1978).

    Google Scholar 

  28. J. W. Schutz,J. Math. Phys. 22, 293 (1981).

    Google Scholar 

  29. W. Tempelman,Nuovo Cimento 49B, 259 (1979).

    Google Scholar 

  30. W. Tempelman,Nuovo Cimento 56B, 1 (1980).

    Google Scholar 

  31. D. E. Fahnline,Am. J. Phys. 43, 492 (1975).

    Google Scholar 

  32. E. Eriksen and K. Vøyenli,Found. Phys. 6, 115 (1976).

    Google Scholar 

  33. G. W. Ficken, Jr.,Am. J. Phys. 44, 1136 (1976).

    Google Scholar 

  34. P. F. González-Diaz,Am. J. Phys. 46, 932 (1978).

    Google Scholar 

  35. P. F. González-Diaz,Nuovo Cimento 51A, 104 (1979).

    Google Scholar 

  36. J. A. Lock,Am. J. Phys. 49, 693 (1981).

    Google Scholar 

  37. J. L. Redding,Am. J. Phys. 50, 163 (1982).

    Google Scholar 

  38. T. M. Kalotas and A. R. Lee,Found. Phys. 8, 787 (1978).

    Google Scholar 

  39. D. E. Fahnline,Am. J. Phys. 50, 818 (1982).

    Google Scholar 

  40. F. R. Halpern,Special Relativity and Quantum Mechanics (Prentice-Hall, Englewood Cliffs, New Jersey, 1968), p. 131.

    Google Scholar 

  41. G. P. Fischer,Am. J. Phys. 40, 1772 (1972).

    Google Scholar 

  42. B. U. Stewart,Am. J. Phys. 47, 50 (1979).

    Google Scholar 

  43. H. Arzeliès,Relativistic Point Dynamics (Pergamon, Oxford, 1972).

    Google Scholar 

  44. C. Møller,The Theory of Relativity (Clarendon, Oxford, London, 1972).

    Google Scholar 

  45. H. Yamasaki,Prog. Theor. Phys. 39, 372 (1968).

    Google Scholar 

  46. H. Liebmann,Nichteuklidische Geometrie (Walter de Gruyter, Berlin, 1923), pp. 77 and 142.

    Google Scholar 

  47. P. A. Shirokov,A Sketch of the Fundamentals of Lobachevskian Geometry (P. Noordhoff, Groningen, the Netherlands, 1964), p. 73.

    Google Scholar 

  48. H. Lenz,Nichteuklidische Geometrie (Bibliographisches Institute, Mannheim, 1967), pp. 122 and 198.

    Google Scholar 

  49. M. J. Greenberg,Euclidean and Non-Euclidean Geometries (Freeman, San Francisco, 1980), p. 346.

    Google Scholar 

  50. A. Sommerfeld,Phys. Z. 10, 826 (1909).

    Google Scholar 

  51. H. Arzeliès,Relativistic Kinematics (Pergamon, London, 1966).

    Google Scholar 

  52. H. P. Stapp,Phys. Rev. 103, 425 (1956).

    Google Scholar 

  53. G. C. Wick,Ann. Phys. (N.Y.)18, 65 (1962), especially Appendix.

    Google Scholar 

  54. R. Shaw,Nuovo Cimento 33, 1074 (1964), especially Appendix II.

    Google Scholar 

  55. M. Juárez and M. Santander,J. Phys. A: Math. Gen. 15, 3411 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamasaki, H. Extension of trigonometric and hyperbolic functions to vectorial arguments and its application to the representation of rotations and Lorentz transformations. Found Phys 13, 1139–1154 (1983). https://doi.org/10.1007/BF00728141

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00728141

Keywords

Navigation