Foundations of Physics

, Volume 12, Issue 1, pp 1–26 | Cite as

Spin correlation in stochastic mechanics

  • William G. Faris


Stochastic mechanics may be used to described the spin of atomic particles. The spin variables have the same expectations as in quantum mechanics, but not the same distributions. They play the role of hidden variables that influence, but do not determine, the results of Stern-Gerlach experiments involving magnets. During the course of such an experiment spin becomes correlated with position. The case of two particles with zero total spin occurs in Bohm's version of the Einstein-Rosen-Podolsky experiment.


Total Spin Hide Variable Spin Variable Atomic Particle Stochastic Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Nelson,Dynamical Theories of Brownian Motion (Princeton University Press, Princeton, 1967).Google Scholar
  2. 2.
    E. Nelson, “The use of the Wiener process in quantum theory,” inCollected Works of Norbert Wiener, Vol. 3, edited by P. Masani (M.I.T. Press, Cambridge), to appear.Google Scholar
  3. 3.
    D. S. Shucker,J. Math. Phys. 22, 491 (1981).Google Scholar
  4. 4.
    D. S. Shucker,J. Functional Anal. 38, 146 (1980).Google Scholar
  5. 5.
    J. Dollard,Commun. Math. Phys. 12, 193 (1969).Google Scholar
  6. 6.
    T. G. Dankel,Arch. Rational Mech. Anal. 37, 192 (1970).Google Scholar
  7. 7.
    T. G. Dankel,J. Math. Phys. 18, 253 (1977).Google Scholar
  8. 8.
    H. C. Corben,Classical and Quantum Theories of Spinning Particles (Holden-Day, San Francisco, 1968).Google Scholar
  9. 9.
    B. d'Espagnat,Sci. Am. 241(5), 158 (1979).Google Scholar
  10. 10.
    M. Jammer,The Philosophy of Quantum Mechanics (Wiley, New York, 1974).Google Scholar
  11. 11.
    F. J. Belinfante,A Survey of Hidden-Variable Theories (Pergamon, Oxford, 1973).Google Scholar
  12. 12.
    A. Peres,Am. J. Phys. 46, 745 (1978).Google Scholar
  13. 13.
    G. Jona-Lasinio, F. Martinelli, and E. Scoppola,Comm. Math. Phys. 80, 223 (1981).Google Scholar
  14. 14.
    H. P. McKean,Stochastic Integrals (Academic Press, New York, 1969).Google Scholar
  15. 15.
    D. Dohrn and F. Guerra,Lett. Nuovo Cimento 22, 121 (1978).Google Scholar
  16. 16.
    A. Böhm,Quantum Mechanics (Springer, New York, 1979).Google Scholar
  17. 17.
    N. D. Mermin,Phys. Rev. D22, 356 (1980).Google Scholar
  18. 18.
    F. Selleri,Found. Phys. 8, 103 (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • William G. Faris
    • 1
  1. 1.Institut des Hautes Études ScientifiquesBures-sur-YvetteFrance

Personalised recommendations