Advertisement

Foundations of Physics

, Volume 11, Issue 3–4, pp 297–305 | Cite as

The essential nonlinearity ofN-level quantum thermodynamics

  • Ralph F. SimmonsJr.
  • James L. Park
Article

Abstract

This paper explores the possibility that linear dynamical maps might be used to describe the energy-conserving, entropy-increasing motions which occur in closed thermodynamic systems as they approach canonical thermal equilibrium. ForN-level quantum systems withN>2, we prove that no such maps exist which are independent of the initial state.

Keywords

Quantum System Thermal Equilibrium Thermodynamic System Quantum Thermodynamic Closed Thermodynamic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Jancel,Foundations of Classical and Quantum Statistical Mechanics (Pergamon Press, 1969).Google Scholar
  2. 2.
    A. Landé,New Foundations of Quantum Mechanics (Cambridge University Press, 1965).Google Scholar
  3. 3.
    One example of this school can be found in D. Ruelle,Statistical Mechanics: Rigorous Results (Benjamin, New York, 1969).Google Scholar
  4. 4.
    G. N. Hatsopoulos and E. P. Gyftopoulos,Found. Phys. 6, 15 (1976).Google Scholar
  5. 5.
    G. N. Hatsopoulos and E. P. Gyftopoulos,Found. Phys. 6, 127 (1976).Google Scholar
  6. 6.
    G. N. Hatsopoulos and E. P. Gyftopoulos,Found. Phys. 6, 439 (1976).Google Scholar
  7. 7.
    G. N. Hatsopoulos and E. P. Gyftopoulos,Found. Phys. 6, 561 (1976).Google Scholar
  8. 8.
    J. L. Park and R. F. Simmons, Jr., The Knots of Quantum Thermodynamics, inOld and New Questions in Physics, Cosmology, Philosophy, and Theoretical Biology: Essays in Honor of Wolfgang Yourgrau, A. van der Merwe, ed. (Plenum Press, New York, 1981), to be published.Google Scholar
  9. 9.
    V. Gorini, A. Kossakowski, and E. C. G. Sudarshan,J. Math. Phys. 17, 821 (1976).Google Scholar
  10. 10.
    G. Lindblad,Commun. Math. Phys. 48, 119 (1976).Google Scholar
  11. 11.
    R. S. Ingarden and A. Kossakowski,Ann. Phys. (N.Y.) 89, 451 (1975).Google Scholar
  12. 12.
    A. Kossakowski,Rep. Math. Phys. 3, 247 (1972).Google Scholar
  13. 13.
    A. Kossakowski,Bull. Acad. Polon. Sci. Math. 20, 1021 (1972).Google Scholar
  14. 14.
    A. Kossakowski,Bull. Acad. Polon. Sci. Math. 21, 649 (1973).Google Scholar
  15. 15.
    J. L. Park and W. Band,Found. Phys. 7, 813 (1977).Google Scholar
  16. 16.
    W. Band and J. L. Park,Found. Phys. 8, 45 (1978).Google Scholar
  17. 17.
    J. L. Park and W. Band,Found. Phys. 8, 239 (1978).Google Scholar
  18. 18.
    H. Margenau and J. L. Park,Found. Phys. 3, 19 (1973).Google Scholar
  19. 19.
    K. Yoshida,Functional Analysis, 4th ed. (Berlin, Springer, 1974).Google Scholar
  20. 20.
    J. M. Blatt,Prog. Theor. Phys. 22, 745 (1959).Google Scholar
  21. 21.
    R. F. Simmons, Jr. and J. L. Park,Found. Phys.,11, 47 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • Ralph F. SimmonsJr.
    • 1
  • James L. Park
    • 1
  1. 1.Department of PhysicsWashington State UniversityPullman

Personalised recommendations